PrintForm
Definitions
nfa
1
Sections
AutomataTheory
Doc
At:
nd
ext
valcom
1
1
2
1
1
1
1
1
1
1
2
3
2
1
1
1
1
1
1.
Alph:
Type
2.
St:
Type
3.
NDA:
NDA(Alph;St)
4.
C:
(St
Alph*)*
5.
||C|| > 0
6.
i:
(||C||-1). ||2of(C[i])|| > 0
7.
q:
St
8.
a:
Alph
9.
p:
St
10.
I(NDA) = 1of(hd(C))
11.
1of(hd(rev(C))) = q & 2of(hd(rev(C))) = nil
12.
NDA(q,a,p)
13.
i:
14.
0
i
15.
i < ||map(
c. < 1of(c),a.2of(c) > ;C)||+1-1
16.
i = ||C||-1
17.
NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
18.
2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
NDA(1of(C[i]),hd((rev(2of(C[i])) @ [a])),1of(C[(i+1)]))
By:
RWH (LemmaC
Thm*
l,m:T*. ||l|| > 0
hd((l @ m)) = hd(l)) 0
Generated subgoals:
1
5.
||C|| > 0
6.
i:
(||C||-1). ||2of(C[i])|| > 0
7.
q:
St
8.
a:
Alph
9.
p:
St
10.
I(NDA) = 1of(hd(C))
11.
1of(hd(rev(C))) = q
12.
2of(hd(rev(C))) = nil
13.
NDA(q,a,p)
14.
i:
15.
0
i
16.
i < ||map(
c. < 1of(c),a.2of(c) > ;C)||+1-1
17.
i = ||C||-1
18.
NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
19.
2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
||rev(2of(C[i]))|| > 0
2
NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
About: