Nuprl Lemma : itermMinus_functionality_wrt_ringeq
∀[r:Rng]. ∀[a,b:int_term()].  "-"a ≡ "-"b supposing a ≡ b
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
rng: Rng, 
itermMinus: "-"num, 
int_term: int_term(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
true: True, 
rng: Rng, 
prop: ℙ, 
squash: ↓T, 
int_term_ind: int_term_ind, 
itermMinus: "-"num, 
ring_term_value: ring_term_value(f;t), 
all: ∀x:A. B[x], 
ringeq_int_terms: t1 ≡ t2, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
int_term_wf, 
ringeq_int_terms_wf, 
iff_weakening_equal, 
rng_minus_wf, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
intEquality, 
functionEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
isectElimination, 
extract_by_obid, 
imageElimination, 
lambdaEquality, 
applyEquality, 
sqequalRule, 
equalityElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:int\_term()].    "-"a  \mequiv{}  "-"b  supposing  a  \mequiv{}  b
Date html generated:
2018_05_21-PM-03_16_13
Last ObjectModification:
2018_01_25-PM-02_19_07
Theory : rings_1
Home
Index