Nuprl Lemma : algebra_act_times_lr

A:Rng. ∀m:algebra{i:l}(A). ∀a,b:|A|. ∀u,v:m.car.
  (((a b) m.act (u m.times v)) ((a m.act u) m.times (b m.act v)) ∈ m.car)


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) alg_act: a.act alg_times: a.times alg_car: a.car infix_ap: y all: x:A. B[x] equal: t ∈ T rng: Rng rng_times: * rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] rng: Rng algebra: algebra{i:l}(A) module: A-Module squash: T prop: and: P ∧ Q infix_ap: y true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  alg_car_wf rng_car_wf algebra_wf rng_wf equal_wf squash_wf true_wf module_action_p alg_times_wf infix_ap_wf alg_act_wf iff_weakening_equal algebra_act_times_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:algebra\{i:l\}(A).  \mforall{}a,b:|A|.  \mforall{}u,v:m.car.
    (((a  *  b)  m.act  (u  m.times  v))  =  ((a  m.act  u)  m.times  (b  m.act  v)))



Date html generated: 2017_10_01-AM-09_51_55
Last ObjectModification: 2017_03_03-PM-00_46_34

Theory : algebras_1


Home Index