Nuprl Lemma : algebra_hom_properties

A:RngSig. ∀M,N:algebra_sig{i:l}(|A|). ∀f:algebra_hom(A; M; N).
  (FunThru2op(M.car;N.car;M.times;N.times;f) ∧ ((f M.one) N.one ∈ N.car))


Proof




Definitions occuring in Statement :  algebra_hom: algebra_hom(A; M; N) alg_one: a.one alg_times: a.times alg_car: a.car algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T rng_car: |r| rng_sig: RngSig fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Definitions unfolded in proof :  all: x:A. B[x] algebra_hom: algebra_hom(A; M; N) uall: [x:A]. B[x] member: t ∈ T module_hom: module_hom(A; M; N) prop: implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  rng_sig_wf algebra_sig_wf algebra_hom_wf squash_wf sq_stable__equal sq_stable__fun_thru_2op alg_one_wf equal_wf alg_times_wf rng_car_wf alg_car_wf fun_thru_2op_wf sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis isect_memberEquality applyEquality independent_functionElimination introduction because_Cache sqequalRule lambdaEquality axiomEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}A:RngSig.  \mforall{}M,N:algebra\_sig\{i:l\}(|A|).  \mforall{}f:algebra\_hom(A;  M;  N).
    (FunThru2op(M.car;N.car;M.times;N.times;f)  \mwedge{}  ((f  M.one)  =  N.one))



Date html generated: 2016_05_16-AM-07_28_08
Last ObjectModification: 2016_01_16-PM-09_59_53

Theory : algebras_1


Home Index