Nuprl Lemma : cons_functionality_wrt_permr_massoc

g:IAbMonoid. ∀a,b:|g|. ∀as,bs:|g| List.  ((a b)  as ≡ bs upto  [a as] ≡ [b bs] upto ~)


Proof




Definitions occuring in Statement :  permr_massoc: as ≡ bs upto ~ massoc: b cons: [a b] list: List all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  permr_massoc: as ≡ bs upto ~ all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  cons_functionality_wrt_permr_upto grp_car_wf massoc_wf massoc_equiv_rel permr_upto_wf list_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis lambdaEquality independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.  \mforall{}as,bs:|g|  List.    ((a  \msim{}  b)  {}\mRightarrow{}  as  \mequiv{}  bs  upto  \msim{}  {}\mRightarrow{}  [a  /  as]  \mequiv{}  [b  /  bs]  upto  \msim{})



Date html generated: 2016_05_16-AM-07_44_46
Last ObjectModification: 2015_12_28-PM-05_53_42

Theory : factor_1


Home Index