Nuprl Lemma : permr_massoc_functionality

g:IAbMonoid. ∀as,as',bs,bs':|g| List.  (as ≡ bs upto  as' ≡ bs' upto  (as ≡ as' upto ⇐⇒ bs ≡ bs' upto ~))


Proof




Definitions occuring in Statement :  permr_massoc: as ≡ bs upto ~ list: List all: x:A. B[x] iff: ⇐⇒ Q implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] permr_massoc: as ≡ bs upto ~ so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  permr_massoc_wf list_wf grp_car_wf iabmonoid_wf permr_upto_functionality_wrt_permr_upto massoc_wf massoc_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination sqequalRule lambdaEquality independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}as,as',bs,bs':|g|  List.
    (as  \mequiv{}  bs  upto  \msim{}  {}\mRightarrow{}  as'  \mequiv{}  bs'  upto  \msim{}  {}\mRightarrow{}  (as  \mequiv{}  as'  upto  \msim{}  \mLeftarrow{}{}\mRightarrow{}  bs  \mequiv{}  bs'  upto  \msim{}))



Date html generated: 2016_05_16-AM-07_44_44
Last ObjectModification: 2015_12_28-PM-05_53_48

Theory : factor_1


Home Index