Nuprl Lemma : permr_massoc_weakening

g:IAbMonoid. ∀as,bs:|g| List.  ((as ≡(|g|) bs)  as ≡ bs upto ~)


Proof




Definitions occuring in Statement :  permr_massoc: as ≡ bs upto ~ permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  permr_massoc: as ≡ bs upto ~ all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  permr_upto_weakening grp_car_wf massoc_wf massoc_equiv_rel permr_wf list_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis lambdaEquality independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}as,bs:|g|  List.    ((as  \mequiv{}(|g|)  bs)  {}\mRightarrow{}  as  \mequiv{}  bs  upto  \msim{})



Date html generated: 2016_05_16-AM-07_44_41
Last ObjectModification: 2015_12_28-PM-05_53_36

Theory : factor_1


Home Index