Nuprl Lemma : rng_lsum_wf

r:Rng. ∀A:Type. ∀as:A List. ∀f:A ⟶ |r|.  {A,r} x ∈ as. f[x] ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{A,r} x ∈ as. f[x] list: List so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type rng: Rng rng_car: |r|
Definitions unfolded in proof :  rng_lsum: Σ{A,r} x ∈ as. f[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng: Rng
Lemmas referenced :  mon_for_wf add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf rng_car_wf add_grp_of_rng_wf list_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality cumulativity functionEquality universeEquality

Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  |r|.    (\mSigma{}\{A,r\}  x  \mmember{}  as.  f[x]  \mmember{}  |r|)



Date html generated: 2016_05_16-AM-08_11_41
Last ObjectModification: 2015_12_28-PM-06_06_19

Theory : list_3


Home Index