Nuprl Lemma : permr_nil_is_nil

T:Type. ∀as:T List.  ((as ≡(T) [])  (as [] ∈ (T List)))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs nil: [] list: List all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q cons: [a b] implies:  Q prop: false: False not: ¬A
Lemmas referenced :  list-cases product_subtype_list list_wf nil_wf permr_wf cons_wf not_permr_cons_nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule universeIsType universeEquality voidElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as  \mequiv{}(T)  [])  {}\mRightarrow{}  (as  =  []))



Date html generated: 2019_10_16-PM-01_00_23
Last ObjectModification: 2018_10_08-AM-10_29_26

Theory : perms_2


Home Index