Nuprl Lemma : bezout_sq_exists_anne

n,m:.  (p:{  | let x,y = p in GCD(m;n;(x * m) + (y * n))})


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) nat: all: x:A. B[x] sq_exists: x:{A| B[x]} spread: spread def product: x:A  B[x] multiply: n * m add: n + m int:
Definitions :  nequal: a  b  T  int_nzero: int_seg: {i..j} lelt: i  j < k and: P  Q nat_plus: nat: le: A  B not: A false: False all: x:A. B[x] implies: P  Q member: t  T so_lambda: x.t[x] sq_exists: x:{A| B[x]} so_lambda: x y.t[x; y] so_apply: x[s1;s2] subtype_rel: A r B rev_implies: P  Q iff: P  Q uimplies: b supposing a guard: {T} sq_type: SQType(T) decidable: Dec(P) or: P  Q prop: uall: [x:A]. B[x] so_apply: x[s]
Lemmas :  div_rem_gcd_anne nequal_wf int_nzero_properties rem_to_div rem_bounds_1 zero-le-nat remainder_wf lelt_wf gcd_p_zero subtype_base_sq set_subtype_base int_subtype_base decidable__equal_nat le_wf all_wf int_seg_wf nat_wf sq_exists_wf gcd_p_wf natrec_wf
\mforall{}n,m:\mBbbN{}.    (\mexists{}p:\{\mBbbZ{}  \mtimes{}  \mBbbZ{}|  let  x,y  =  p  in  GCD(m;n;(x  *  m)  +  (y  *  n))\})


Date html generated: 2013_09_05-AM-11_16_10
Last ObjectModification: 2013_09_05-AM-10_38_32

Home Index