Nuprl Lemma : gcd_sq_exists_anne

n,m:.  (g:{| GCD(m;n;g)})


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) nat: all: x:A. B[x] sq_exists: x:{A| B[x]}
Definitions :  all: x:A. B[x] member: t  T implies: P  Q so_lambda: x.t[x] sq_exists: x:{A| B[x]} so_lambda: x y.t[x; y] so_apply: x[s1;s2] subtype_rel: A r B nat: le: A  B not: A false: False int_seg: {i..j} lelt: i  j < k and: P  Q nat_plus: int_nzero: nequal: a  b  T  prop: uall: [x:A]. B[x] so_apply: x[s] decidable: Dec(P) or: P  Q uimplies: b supposing a guard: {T} sq_type: SQType(T) iff: P  Q rev_implies: P  Q
Lemmas :  nat_wf all_wf int_seg_wf sq_exists_wf gcd_p_wf natrec_wf decidable__equal_nat le_wf subtype_base_sq set_subtype_base int_subtype_base gcd_p_zero zero-le-nat remainder_wf lelt_wf rem_bounds_1 div_rem_gcd_anne nequal_wf
\mforall{}n,m:\mBbbN{}.    (\mexists{}g:\{\mBbbN{}|  GCD(m;n;g)\})


Date html generated: 2013_09_05-AM-11_15_44
Last ObjectModification: 2013_08_22-PM-00_15_20

Home Index