Nuprl Lemma : Accum-class-top

[Info,A:Type]. ∀[es:EO+(Info)]. ∀[f:Top]. ∀[X:EClass(A)]. ∀[init:Id ─→ bag(Top)].
  (Accum-class(f;init;X) ∈ EClass(Top))


Proof




Definitions occuring in Statement :  Accum-class: Accum-class(f;init;X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  rec-comb_wf false_wf le_wf int_seg_wf select_wf cons_wf nil_wf sq_stable__le length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat bag-combine_wf lelt_wf single-bag_wf bag_wf Id_wf top_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf

Latex:
\mforall{}[Info,A:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:Top].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(Top)].
    (Accum-class(f;init;X)  \mmember{}  EClass(Top))



Date html generated: 2015_07_22-PM-00_11_21
Last ObjectModification: 2015_01_28-AM-11_40_59

Home Index