Nuprl Lemma : disjoint-union-tr_wf

[A,B,S:Type]. ∀[tr1:Id ─→ A ─→ S ─→ S]. ∀[tr2:Id ─→ B ─→ S ─→ S].  (tr1 tr2 ∈ Id ─→ (A B) ─→ S ─→ S)


Proof




Definitions occuring in Statement :  disjoint-union-tr: tr1 tr2 Id: Id uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] union: left right universe: Type
Lemmas :  isl_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_assert_elim btrue_wf btrue_neq_bfalse Id_wf

Latex:
\mforall{}[A,B,S:Type].  \mforall{}[tr1:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  S  {}\mrightarrow{}  S].  \mforall{}[tr2:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  S  {}\mrightarrow{}  S].
    (tr1  +  tr2  \mmember{}  Id  {}\mrightarrow{}  (A  +  B)  {}\mrightarrow{}  S  {}\mrightarrow{}  S)



Date html generated: 2015_07_22-PM-00_07_21
Last ObjectModification: 2015_01_28-AM-11_42_24

Home Index