Nuprl Lemma : bind-class-rel

[Info,T,S:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(T)]. ∀[Y:T ─→ EClass(S)]. ∀[e:E]. ∀[v:S].
  uiff(v ∈ X >u> Y[u](e);↓∃e':{e':E| e' ≤loc . ∃u:T. (u ∈ X(e') ∧ v ∈ Y[u](e)))


Proof




Definitions occuring in Statement :  bind-class: X >x> Y[x] classrel: v ∈ X(e) eclass: EClass(A[eo; e]) eo-forward: eo.e event-ordering+: EO+(Info) es-le: e ≤loc e'  es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] squash: T and: P ∧ Q set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Lemmas :  es-le-before_wf2 event-ordering+_subtype list-subtype-bag es-E_wf es-le_wf bag-member-combine bag-combine_wf eclass_wf event-ordering+_wf eo-forward_wf member-eo-forward-E equal_wf Id_wf es-loc_wf classrel_wf exists_wf bag-member_wf bag_wf subtype_rel_self l_member_wf member-es-le-before3 decidable__es-le
\mforall{}[Info,T,S:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].  \mforall{}[Y:T  {}\mrightarrow{}  EClass(S)].  \mforall{}[e:E].  \mforall{}[v:S].
    uiff(v  \mmember{}  X  >u>  Y[u](e);\mdownarrow{}\mexists{}e':\{e':E|  e'  \mleq{}loc  e  \}  .  \mexists{}u:T.  (u  \mmember{}  X(e')  \mwedge{}  v  \mmember{}  Y[u](e)))



Date html generated: 2015_07_17-PM-00_46_03
Last ObjectModification: 2015_01_27-PM-11_13_52

Home Index