Nuprl Lemma : es-interface-accum_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[b:B]. ∀[f:B ─→ A ─→ B].  (es-interface-accum(f;b;X) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
es-interface-accum: es-interface-accum(f;x;X)
, 
eclass: EClass(A[eo; e])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
in-eclass_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
single-bag_wf, 
list_accum_wf, 
es-E-interface_wf, 
Id_wf, 
es-loc_wf, 
es-interface-predecessors_wf, 
eclass-val_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
assert-bnot, 
empty-bag_wf, 
eclass_wf, 
event-ordering+_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[b:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].    (es-interface-accum(f;b;X)  \mmember{}  EClass(B))
Date html generated:
2015_07_20-PM-03_46_08
Last ObjectModification:
2015_01_27-PM-10_09_12
Home
Index