Nuprl Lemma : es-interface-sum-cases

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(ℤ)]. ∀[e:E].
  (Σ≤e(X)
  if e ∈b then if e ∈b prior(X) then Σ≤prior(X)(e)(X) else fi  X(e)
    if e ∈b prior(X) then Σ≤prior(X)(e)(X)
    else 0
    fi 
  ∈ ℤ)


Proof




Definitions occuring in Statement :  es-interface-sum: Σ≤e(X) es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if then else fi  uall: [x:A]. B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf in-eclass_wf es-interface-subtype_rel2 top_wf subtype_top bool_wf eqtt_to_assert es-prior-interface_wf1 es-E-interface_wf es-interface-local-state_wf eclass-val_wf2 es-prior-interface_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eclass-val_wf es-interface-local-state-cases iff_weakening_equal

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(\mBbbZ{})].  \mforall{}[e:E].
    (\mSigma{}\mleq{}e(X)
    =  if  e  \mmember{}\msubb{}  X  then  if  e  \mmember{}\msubb{}  prior(X)  then  \mSigma{}\mleq{}prior(X)(e)(X)  else  0  fi    +  X(e)
        if  e  \mmember{}\msubb{}  prior(X)  then  \mSigma{}\mleq{}prior(X)(e)(X)
        else  0
        fi  )



Date html generated: 2015_07_21-PM-03_44_16
Last ObjectModification: 2015_02_04-PM-06_10_46

Home Index