Nuprl Lemma : flow-graph-information-flow-relation
∀[Info,T:Type].
  ∀S:Id List. ∀G:Graph(S). ∀F:information-flow(T;S). ∀es:EO+(Info). ∀X:EClass(T). ∀e:E(X). ∀i:Id.
    ((i ∈ S)
    
⇒ es-interface-locs-list(es;X;S)
    
⇒ flow-graph(S;T;F;G)
    
⇒ (loc(e)─→i)∈G supposing information-flow-relation(es;X;F;e;i))
Proof
Definitions occuring in Statement : 
information-flow-relation: information-flow-relation(es;X;F;e;i)
, 
es-interface-locs-list: es-interface-locs-list(es;X;S)
, 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
flow-graph: flow-graph(S;T;F;G)
, 
information-flow: information-flow(T;S)
, 
es-loc: loc(e)
, 
id-graph-edge: (i─→j)∈G
, 
id-graph: Graph(S)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Lemmas : 
assert_witness, 
information-flow-relation_wf, 
l_member_wf, 
Id_wf, 
flow-graph_wf, 
es-interface-locs-list_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
es-E-interface_wf, 
eclass_wf, 
information-flow_wf, 
id-graph_wf, 
list_wf, 
less_than_wf, 
length_wf, 
isl_wf, 
length-es-interface-vals, 
es-interface-predecessors-nonempty, 
es-loc_wf
Latex:
\mforall{}[Info,T:Type].
    \mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}F:information-flow(T;S).  \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).  \mforall{}e:E(X).  \mforall{}i:Id.
        ((i  \mmember{}  S)
        {}\mRightarrow{}  es-interface-locs-list(es;X;S)
        {}\mRightarrow{}  flow-graph(S;T;F;G)
        {}\mRightarrow{}  (loc(e){}\mrightarrow{}i)\mmember{}G  supposing  information-flow-relation(es;X;F;e;i))
Date html generated:
2015_07_20-PM-03_53_10
Last ObjectModification:
2015_01_27-PM-10_15_24
Home
Index