Nuprl Lemma : fpf-cap-join-subtype

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Type]. ∀[a:A].  (f ⊕ g(a)?Top ⊆f(a)?Top)


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top universe: Type
Lemmas :  fpf_wf deq_wf fpf-join-cap subtype-fpf2 top_wf subtype_top fpf-dom_wf bool_wf eqtt_to_assert subtype_rel_self fpf-ap_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Type].  \mforall{}[a:A].    (f  \moplus{}  g(a)?Top  \msubseteq{}r  f(a)?Top)



Date html generated: 2015_07_17-AM-11_13_44
Last ObjectModification: 2015_01_28-AM-07_42_29

Home Index