Nuprl Lemma : fpf-dom_functionality

[A:Type]. ∀[B:A ─→ Type]. ∀[eq1,eq2:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[x:A].  x ∈ dom(f) x ∈ dom(f)


Proof




Definitions occuring in Statement :  fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  deq-member_wf bool_wf eqtt_to_assert assert-deq-member iff_imp_equal_bool btrue_wf true_wf l_member_wf assert_wf iff_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf false_wf fpf_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq1,eq2:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].
    x  \mmember{}  dom(f)  =  x  \mmember{}  dom(f)



Date html generated: 2015_07_17-AM-09_15_53
Last ObjectModification: 2015_01_28-AM-07_52_52

Home Index