Nuprl Lemma : fpf-join-list-dom

[A:Type]. ∀eq:EqDecider(A). ∀[B:A ─→ Type]. ∀L:a:A fp-> B[a] List. ∀x:A.  (↑x ∈ dom(⊕(L)) ⇐⇒ (∃f∈L. ↑x ∈ dom(f)))


Proof




Definitions occuring in Statement :  fpf-join-list: (L) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_exists: (∃x∈L. P[x]) list: List assert: b uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ─→ B[x] universe: Type
Lemmas :  list_induction all_wf iff_wf assert_wf fpf-dom_wf fpf-join-list_wf top_wf subtype_rel_list fpf_wf subtype-fpf2 subtype_top l_exists_wf l_member_wf list_wf deq_wf reduce_nil_lemma deq_member_nil_lemma false_wf l_exists_nil l_exists_wf_nil l_exists_cons cons_wf or_wf reduce_cons_lemma fpf-join-dom fpf-join_wf
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(\moplus{}(L))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}f\mmember{}L.  \muparrow{}x  \mmember{}  dom(f)))



Date html generated: 2015_07_17-AM-09_20_50
Last ObjectModification: 2015_01_28-AM-07_49_20

Home Index