Nuprl Lemma : rec-combined-loc-class-opt-3_wf
∀[Info,A,B,C,D:Type]. ∀[F:Id ─→ bag(A) ─→ bag(B) ─→ bag(C) ─→ bag(D) ─→ bag(D)]. ∀[init:Id ─→ bag(D)]. ∀[X:EClass(A)].
∀[Y:EClass(B)]. ∀[Z:EClass(C)].
  (rec-combined-loc-class-opt-3(F;init;X;Y;Z) ∈ EClass(D))
Proof
Definitions occuring in Statement : 
rec-combined-loc-class-opt-3: rec-combined-loc-class-opt-3(F;init;X;Y;Z)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
rec-comb_wf, 
select_wf, 
cons_wf, 
nil_wf, 
length_wf, 
length_nil, 
non_neg_length, 
length_wf_nil, 
length_cons, 
length_wf_nat, 
int_seg_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
false_wf, 
lelt_wf, 
bag_wf, 
sq_stable__le, 
eclass_wf, 
event-ordering+_wf, 
Id_wf
Latex:
\mforall{}[Info,A,B,C,D:Type].  \mforall{}[F:Id  {}\mrightarrow{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)  {}\mrightarrow{}  bag(D)  {}\mrightarrow{}  bag(D)].
\mforall{}[init:Id  {}\mrightarrow{}  bag(D)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[Z:EClass(C)].
    (rec-combined-loc-class-opt-3(F;init;X;Y;Z)  \mmember{}  EClass(D))
Date html generated:
2015_07_21-PM-02_57_03
Last ObjectModification:
2015_01_27-PM-07_29_03
Home
Index