Nuprl Lemma : subtype-fpf-cap5

[X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X].  f(x)?Void ⊆g(x)?Top supposing || g


Proof




Definitions occuring in Statement :  fpf-compatible: || g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top void: Void universe: Type
Lemmas :  fpf-dom_wf subtype-fpf2 top_wf subtype_top bool_wf subtype_rel-equal fpf-ap_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-cap_wf fpf-compatible_wf fpf_wf deq_wf
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].    f(x)?Void  \msubseteq{}r  g(x)?Top  supposing  f  ||  g



Date html generated: 2015_07_17-AM-09_18_44
Last ObjectModification: 2015_01_28-AM-07_50_02

Home Index