Nuprl Lemma : st-key-match_wf
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)]. ∀[k1,k2:ℕ + Atom1].  (st-key-match(tab;k1;k2) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
st-key-match: st-key-match(tab;k1;k2)
, 
secret-table: secret-table(T)
, 
Id: Id
, 
nat: ℕ
, 
atom: Atom$n
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
union: left + right
, 
universe: Type
Lemmas : 
bfalse_wf, 
lt_int_wf, 
st-ptr_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
st-length_wf, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
eq_atom_wf1, 
st-atom_wf, 
lelt_wf, 
nat_wf, 
secret-table_wf, 
Id_wf
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[k1,k2:\mBbbN{}  +  Atom1].    (st-key-match(tab;k1;k2)  \mmember{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_57_05
Last ObjectModification:
2015_01_27-PM-01_03_12
Home
Index