Nuprl Lemma : sv-bag-equals-list
∀[A:Type]. ∀[L:A List]. ∀[bs:bag(A)].  (L = bs ∈ (A List)) supposing ((L = bs ∈ bag(A)) and single-valued-list(L;A))
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
permutation_wf, 
permutation_weakening, 
permutation-sv-list, 
member_wf, 
equal-wf-base, 
equal_wf, 
bag_wf, 
list-subtype-bag, 
single-valued-list_wf, 
list_wf, 
member-permutation, 
l_member_wf
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[bs:bag(A)].    (L  =  bs)  supposing  ((L  =  bs)  and  single-valued-list(L;A))
Date html generated:
2015_07_23-AM-11_26_16
Last ObjectModification:
2015_01_28-PM-11_15_37
Home
Index