Nuprl Lemma : sv-list-equal
∀T:Type. ∀L1,L2:T List. ∀x:T.
  (single-valued-list(L1;T)
  
⇒ single-valued-list(L2;T)
  
⇒ (x ∈ L1)
  
⇒ (x ∈ L2)
  
⇒ (||L1|| = ||L2|| ∈ ℤ)
  
⇒ (L1 = L2 ∈ (T List)))
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
list_extensionality, 
select_wf, 
sq_stable__le, 
select_member, 
lelt_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_wf, 
nat_wf, 
equal_wf, 
length_wf, 
l_member_wf, 
single-valued-list_wf, 
list_wf
Latex:
\mforall{}T:Type.  \mforall{}L1,L2:T  List.  \mforall{}x:T.
    (single-valued-list(L1;T)
    {}\mRightarrow{}  single-valued-list(L2;T)
    {}\mRightarrow{}  (x  \mmember{}  L1)
    {}\mRightarrow{}  (x  \mmember{}  L2)
    {}\mRightarrow{}  (||L1||  =  ||L2||)
    {}\mRightarrow{}  (L1  =  L2))
Date html generated:
2015_07_23-AM-11_25_53
Last ObjectModification:
2015_01_28-PM-11_15_56
Home
Index