{ [B:Type]. [n:]. [m:n + 1]. [A:n  Type].
  [f:funtype(n - m;x.(A (x + m));B)]. [lst:k:{m..n}  (A k)].
    (apply_gen(n;lst) m f  B) }

{ Proof }



Definitions occuring in Statement :  apply_gen: apply_gen(n;lst) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a lambda: x.A[x] function: x:A  B[x] subtract: n - m add: n + m natural_number: $n universe: Type funtype: funtype(n;A;T)
Definitions :  tactic: Error :tactic,  exists: x:A. B[x] nat: equal: s = t int: subtract: n - m MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  D: Error :D,  CollapseTHEN: Error :CollapseTHEN,  sqequal: s ~ t member: t  T isect: x:A. B[x] uall: [x:A]. B[x] funtype: funtype(n;A;T) apply: f a function: x:A  B[x] int_seg: {i..j} universe: Type apply_gen: apply_gen(n;lst) axiom: Ax set: {x:A| B[x]}  all: x:A. B[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) implies: P  Q lelt: i  j < k primrec: primrec(n;b;c) ycomb: Y lambda: x.A[x] fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) subtype: S  T rationals: real: grp_car: |g| natural_number: $n add: n + m false: False prop: void: Void minus: -n limited-type: LimitedType sq_type: SQType(T) guard: {T} iff: P  Q rev_implies: P  Q label: ...$L... t bool: Unfold: Error :Unfold,  eq_int: (i = j) btrue: tt top: Top BHyp: Error :BHyp,  bfalse: ff Try: Error :Try,  Complete: Error :Complete,  pair: <a, b> append: as @ bs qabs: |r| nil: [] filter: filter(P;l) bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y suptype: suptype(S; T) ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] union: left + right unit: Unit decide_bfalse: decide_bfalse{decide_bfalse_compseq_tag_def:o}(v11.g[v11]; v21.f[v21]) es-E-interface: E(X) squash: T true: True
Lemmas :  squash_wf true_wf inconsistent-bool-eq2 gen_hyp_tp ifthenelse_wf primrec_wf assert_of_eq_int iff_weakening_uiff iff_functionality_wrt_iff assert_wf iff_imp_equal_bool bfalse_wf eq_int_eq_true bool_subtype_base bool_wf eq_int_wf ycomb-unroll nat_ind_tp nat_properties ge_wf rev_implies_wf iff_wf int_subtype_base subtype_base_sq int_seg_properties funtype_wf int_seg_wf nat_wf member_wf false_wf le_wf not_wf subtype_rel_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
\mforall{}[lst:k:\{m..n\msupminus{}\}  {}\mrightarrow{}  (A  k)].
    (apply\_gen(n;lst)  m  f  \mmember{}  B)


Date html generated: 2011_08_17-PM-06_03_04
Last ObjectModification: 2011_05_31-AM-11_52_08

Home Index