{ [B:Type]. [n:]. [m:n + 1]. [q:m + 1]. [A:n  Type].
  [lst:k:{q..n}  (A k)]. [r:m]. [a:A r].
  [f:funtype(n - m;x.(A (x + m));B)].
    ((apply_gen(n;x.if (x = r) then a else lst x fi ) m f)
    = (apply_gen(n;lst) m f)) }

{ Proof }



Definitions occuring in Statement :  apply_gen: apply_gen(n;lst) eq_int: (i = j) ifthenelse: if b then t else f fi  int_seg: {i..j} nat: uall: [x:A]. B[x] apply: f a lambda: x.A[x] function: x:A  B[x] subtract: n - m add: n + m natural_number: $n universe: Type equal: s = t funtype: funtype(n;A;T)
Definitions :  Auto: Error :Auto,  exists: x:A. B[x] nat: equal: s = t int: subtract: n - m D: Error :D,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  int_seg: {i..j} apply: f a function: x:A  B[x] member: t  T isect: x:A. B[x] uall: [x:A]. B[x] universe: Type funtype: funtype(n;A;T) apply_gen: apply_gen(n;lst) lambda: x.A[x] ifthenelse: if b then t else f fi  eq_int: (i = j) axiom: Ax all: x:A. B[x] subtype: S  T rationals: real: set: {x:A| B[x]}  le: A  B not: A false: False implies: P  Q void: Void less_than: a < b add: n + m minus: -n lelt: i  j < k and: P  Q prop: subtype_rel: A r B uiff: uiff(P;Q) product: x:A  B[x] uimplies: b supposing a ge: i  j  natural_number: $n strong-subtype: strong-subtype(A;B) grp_car: |g| limited-type: LimitedType sq_type: SQType(T) guard: {T} squash: T true: True Unfold: Error :Unfold,  sqequal: s ~ t btrue: tt MaAuto: Error :MaAuto,  primrec: primrec(n;b;c) ycomb: Y top: Top bool: bfalse: ff Try: Error :Try,  Complete: Error :Complete,  fpf: a:A fp-B[a] pair: <a, b> eclass: EClass(A[eo; e]) append: as @ bs qabs: |r| nil: [] filter: filter(P;l) bnot: b assert: b iff: P  Q bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y rev_implies: P  Q or: P  Q union: left + right decide: case b of inl(x) =s[x] | inr(y) =t[y]
Lemmas :  primrec_wf eqtt_to_assert bool_cases rev_implies_wf iff_wf assert_of_eq_int iff_weakening_uiff iff_functionality_wrt_iff assert_wf iff_imp_equal_bool bfalse_wf eq_int_eq_true bool_wf bool_subtype_base eq_int_wf ycomb-unroll squash_wf true_wf nat_ind_tp int_subtype_base subtype_base_sq int_seg_properties funtype_wf int_seg_wf nat_wf member_wf false_wf le_wf not_wf nat_properties ge_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[q:\mBbbN{}m  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[lst:k:\{q..n\msupminus{}\}  {}\mrightarrow{}  (A  k)].  \mforall{}[r:\mBbbN{}m].
\mforall{}[a:A  r].  \mforall{}[f:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
    ((apply\_gen(n;\mlambda{}x.if  (x  =\msubz{}  r)  then  a  else  lst  x  fi  )  m  f)  =  (apply\_gen(n;lst)  m  f))


Date html generated: 2011_08_17-PM-06_03_55
Last ObjectModification: 2011_05_31-PM-09_23_40

Home Index