Nuprl Lemma : ballot-less-order

Linorder(ballot-id();b1,b2.(ballot-less(b1;b2))  (b1 = b2))


Proof not projected




Definitions occuring in Statement :  ballot-less: ballot-less(b1;b2) ballot-id: ballot-id() linorder: Linorder(T;x,y.R[x; y]) assert: b or: P  Q equal: s = t
Definitions :  eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] universe: Type limited-type: LimitedType subtype: S  T prop: ballot-less: ballot-less(b1;b2) implies: P  Q member: t  T strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] all: x:A. B[x] refl: Refl(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) ballot-id: ballot-id() linorder: Linorder(T;x,y.R[x; y]) and: P  Q connex: Connex(T;x,y.R[x; y]) order: Order(T;x,y.R[x; y]) so_lambda: x y.t[x; y] or: P  Q assert: b equal: s = t product: x:A  B[x] nat: unit: Unit union: left + right guard: {T} fpf-dom: x  dom(f) pi2: snd(t) lambda: x.A[x] so_lambda: x.t[x] isl: isl(x) outl: outl(x) btrue: tt sq_type: SQType(T) axiom: Ax inr: inr x  natural_number: $n bool: true: True pi1: fst(t) void: Void inl: inl x  divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i lg-edge: lg-edge(g;a;b) ses-action: Action(e) ses-legal-sequence: Legal(pas) given prvt decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) le_int: i z j eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q es-locl: (e <loc e') es-causl: (e < e') eq_int: (i = j) band: p  q lt_int: i <z j bor: p q false: False set: {x:A| B[x]}  int: decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  real: grp_car: |g| top: Top sqequal: s ~ t list: type List iff: P  Q decision: Decision nat_plus: rationals: atom: Atom$n dstype: dstype(TypeNames; d; a) fset: FSet{T} Id: Id IdLnk: IdLnk Knd: Knd MaName: MaName consensus-state3: consensus-state3(T) consensus-rcv: consensus-rcv(V;A) es-E: E es-E-interface: E(X) runEvents: runEvents(r) Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Decide: Error :Decide,  tactic: Error :tactic,  proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j length: ||as||
Lemmas :  decidable__lt not_functionality_wrt_uiff decidable__equal_unit decidable__equal_nat decidable__equal_product decidable__equal_union decidable__or ifthenelse_wf decidable_wf pi1_wf_top top_wf pi2_wf nat_properties lt_int_wf eq_int_wf band_wf bor_wf decidable__assert assert_of_lt_int assert_of_eq_int and_functionality_wrt_uiff assert_of_band uiff_transitivity or_functionality_wrt_uiff assert_of_bor true_wf bool_wf subtype_base_sq bool_subtype_base outl_wf le_wf pi1_wf union_subtype_base product_subtype_base set_subtype_base int_subtype_base unit_subtype_base assert_elim false_wf nat_wf unit_wf assert_wf trans_wf anti_sym_wf refl_wf order_wf connex_wf linorder_wf member_wf ballot-less_wf ballot-id_wf

Linorder(ballot-id();b1,b2.(\muparrow{}ballot-less(b1;b2))  \mvee{}  (b1  =  b2))


Date html generated: 2011_10_20-PM-04_16_08
Last ObjectModification: 2011_01_29-AM-00_52_27

Home Index