{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [s:FSet{E(X)}]. [e:E(X)].
    f e  cut(X;f;s)
     prior(X)(e)  cut(X;f;s) supposing e  prior(X)
     e  cut(X;f;s) 
    supposing e  s }

{ Proof }



Definitions occuring in Statement :  cut-of: cut(X;f;s) es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq: es-eq(es) assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top and: P  Q apply: f a universe: Type fset: FSet{s} fset-member: a  s
Definitions :  es-causle: e c e' nil: [] es-interface-pred: X-pred cons: [car / cdr] fset-closed: (s closed under fs) fpf-cap: f(x)?z set-equal: set-equal(T;x;y) list: type List cond-class: [X?Y] so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) fset-filter: {x  s | P[x]} fset-singleton: {x} fset-intersection: a  b fset-union: x  y fset-remove: fset-remove(eq;y;s) fset-add: fset-add(eq;x;s) cand: A c B in-eclass: e  X fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) deq-member: deq-member(eq;x;L) es-prior-interface: prior(X) eclass-val: X(e) cut-of: cut(X;f;s) implies: P  Q pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] product: x:A  B[x] and: P  Q es-eq: es-eq(es) es-cut: Cut(X;f) assert: b prop: fset-member: a  s uimplies: b supposing a quotient: x,y:A//B[x; y] set: {x:A| B[x]}  es-E-interface: E(X) fset: FSet{T} union: left + right sys-antecedent: sys-antecedent(es;Sys) subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  f-subset: xs  ys sq_stable: SqStable(P) squash: T fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) i-member: r  I rleq: x  y rnonneg: rnonneg(r) req: x = y is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) is_list_splitting: is_list_splitting(T;L;LL;L2;f) value-type: value-type(T) no_repeats: no_repeats(T;l) prime_ideal_p: IsPrimeIdeal(R;P) integ_dom_p: IsIntegDom(r) grp_leq: a  b monoid_hom_p: IsMonHom{M1,M2}(f) group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) fun_thru_2op: FunThru2op(A;B;opa;opb;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) bilinear: BiLinear(T;pl;tm) inverse: Inverse(T;op;id;inv) comm: Comm(T;op) assoc: Assoc(T;op) ident: Ident(T;op;id) coprime: CoPrime(a,b) uconnex: uconnex(T; x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) eqfun_p: IsEqFun(T;eq) inject: Inj(A;B;f) inv_funs: InvFuns(A;B;f;g) uni_sat: a = !x:T. Q[x] so_lambda: x.t[x] iff: P  Q decidable: Dec(P) collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) exists: x:A. B[x] es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-le: e loc e'  es-locl: (e <loc e') es-causl: (e < e') infix_ap: x f y cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i l_disjoint: l_disjoint(T;l1;l2) bool: l_all: (xL.P[x]) deq: EqDecider(T) hd: hd(l) tl: tl(l) nat: rev_implies: P  Q sqequal: s ~ t int: unit: Unit bnot: b bor: p q band: p  q bimplies: p  q es-eq-E: e = e' eq_lnk: a = b eq_id: a = b eq_str: Error :eq_str,  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] grp_blt: a < b set_blt: a < b null: null(as) eq_int: (i = j) le_int: i z j lt_int: i <z j eq_bool: p =b q btrue: tt bfalse: ff limited-type: LimitedType int_seg: {i..j} natural_number: $n rationals: real: lelt: i  j < k p-outcome: Outcome
Lemmas :  le_wf select_member es-interface-pred_wf bnot_wf not_wf bool_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert cons_member nat_wf l_member_wf f-subset_wf sq_stable__all sq_stable__and sq_stable__uall squash_wf sq_stable_from_decidable decidable__fset-member fset-member_wf-cut cut-of-property fset-member_wf es-E-interface_wf cut-of_wf fset-member_witness eclass-val_wf es-prior-interface_wf assert_wf true_wf deq-member_wf ifthenelse_wf false_wf es-eq_wf-interface fset_wf sys-antecedent_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf top_wf eclass_wf eclass-val_wf2 member_wf es-cut_wf subtype_rel_wf in-eclass_wf es-prior-interface_wf0 es-prior-interface_wf1 uiff_inversion set-equal_wf fset-closed_wf es-interface-pred_wf2 es-interface-subtype_rel2

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[s:FSet\{E(X)\}].
\mforall{}[e:E(X)].
    f  e  \mmember{}  cut(X;f;s)  \mwedge{}  prior(X)(e)  \mmember{}  cut(X;f;s)  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)  \mwedge{}  e  \mmember{}  cut(X;f;s) 
    supposing  e  \mmember{}  s


Date html generated: 2011_08_16-PM-05_49_52
Last ObjectModification: 2011_06_20-AM-01_35_41

Home Index