{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X).
      [R:E(X)  E(X)  ]
        (Refl(E(X);a,b.R[a;b])
         Trans(E(X);a,b.R[a;b])
         (b:E(X). R[f b;b] supposing (loc(f b) = loc(b)))
         (a,b:E(X).  ((a <loc b)  R[a;b]))
         (a,b:E(X).  R[a;b] supposing a (X;f) b)) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-loc: loc(e) Id: Id trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) uimplies: b supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] all: x:A. B[x] not: A implies: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t
Definitions :  record: record(x.T[x]) union: left + right es-causl: (e < e') bool: top: Top lambda: x.A[x] fpf: a:A fp-B[a] record-select: r.x limited-type: LimitedType es-loc: loc(e) es-E: E subtype: S  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B void: Void false: False member: t  T true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b fset-member: a  s cut-order: a (X;f) b event_ordering: EO es-locl: (e <loc e') Id: Id equal: s = t not: A trans: Trans(T;x,y.E[x; y]) event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) sys-antecedent: sys-antecedent(es;Sys) uall: [x:A]. B[x] es-E-interface: E(X) all: x:A. B[x] uimplies: b supposing a isect: x:A. B[x] apply: f a prop: universe: Type implies: P  Q function: x:A  B[x] refl: Refl(T;x,y.E[x; y]) so_lambda: x y.t[x; y] so_apply: x[s1;s2] RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  tactic: Error :tactic,  in-eclass: e  X es-prior-interface: prior(X) eclass-val: X(e) cand: A c B iff: P  Q rel_plus: R infix_ap: x f y es-cut: Cut(X;f) fset: FSet{T} cut-of: cut(X;f;s) deq-member: deq-member(eq;x;L) or: P  Q guard: {T} l_member: (x  l) so_apply: x[s] so_lambda: x.t[x] Try: Error :Try,  THENL_cons: Error :THENL_nil,  THENL_cons: Error :THENL_cons,  CollapseTHENM: Error :CollapseTHENM,  THENL_v2: Error :THENL,  label: ...$L... t atom: Atom es-base-E: es-base-E(es) token: "$token" pair: <a, b> sq_type: SQType(T) es-causle: e c e' es-le: e loc e'  rev_implies: P  Q exists: x:A. B[x]
Lemmas :  es-locl_irreflexivity es-le_weakening_eq es-locl_transitivity2 cut-order-prior es-prior-interface_wf eclass-val_wf2 eclass-val_wf es-prior-interface-val cut-order-step subtype_base_sq set_subtype_base es-causl_transitivity2 es-causl_irreflexivity es-base-E_wf subtype_rel_self es-causle_wf es-causle_weakening_eq ifthenelse_wf false_wf fset-member_wf cut-of_wf true_wf deq-member_wf uiff_inversion cut-order-induction cut-order-iff es-E-interface_wf refl_wf trans_wf member_wf es-E_wf subtype_rel_wf es-loc_wf event-ordering+_inc Id_wf not_wf es-locl_wf cut-order_wf cut-order_witness sys-antecedent_wf eclass_wf event-ordering+_wf top_wf es-causl_wf assert_wf es-E-interface-subtype_rel

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}]
            (Refl(E(X);a,b.R[a;b])
            {}\mRightarrow{}  Trans(E(X);a,b.R[a;b])
            {}\mRightarrow{}  (\mforall{}b:E(X).  R[f  b;b]  supposing  \mneg{}(loc(f  b)  =  loc(b)))
            {}\mRightarrow{}  (\mforall{}a,b:E(X).    ((a  <loc  b)  {}\mRightarrow{}  R[a;b]))
            {}\mRightarrow{}  (\mforall{}a,b:E(X).    R[a;b]  supposing  a  \mleq{}(X;f)  b))


Date html generated: 2011_08_16-PM-05_56_39
Last ObjectModification: 2011_06_20-AM-01_39_25

Home Index