{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X). a,b:E(X).
      (a (X;f) b
       (a = b)
           ((((loc(f b) = loc(b)))  (f b < b))  a (X;f) f b)
           ((b  prior(X))  a (X;f) prior(X)(b))) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') es-loc: loc(e) Id: Id assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q not: A or: P  Q and: P  Q apply: f a universe: Type equal: s = t
Definitions :  true: True fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b uiff: uiff(P;Q) false: False void: Void es-causle: e c e' uimplies: b supposing a fset-member: a  s decide: case b of inl(x) =s[x] | inr(y) =t[y] subtype_rel: A r B atom: Atom es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  cand: A c B limited-type: LimitedType prop: dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ set: {x:A| B[x]}  record-select: r.x infix_ap: x f y bool: subtype: S  T es-E: E lambda: x.A[x] rev_implies: P  Q eclass-val: X(e) es-prior-interface: prior(X) in-eclass: e  X apply: f a es-loc: loc(e) top: Top member: t  T implies: P  Q isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] all: x:A. B[x] function: x:A  B[x] iff: P  Q or: P  Q union: left + right es-causl: (e < e') event_ordering: EO not: A equal: s = t Id: Id and: P  Q product: x:A  B[x] assert: b cut-order: a (X;f) b es-E-interface: E(X) sys-antecedent: sys-antecedent(es;Sys) eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] event-ordering+: EO+(Info) universe: Type MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  guard: {T} existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y squash: T fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) sq_stable: SqStable(P) i-member: r  I AssertBY: Error :AssertBY,  tactic: Error :tactic,  es-init: es-init(es;e) es-pred: pred(e) es-interface-at: X@i intensional-universe: IType tag-by: zT isect2: T1  T2 b-union: A  B bag: bag(T) fpf-cap: f(x)?z record: record(x.T[x]) es-local-pred: last(P) deq-member: deq-member(eq;x;L) es-cut: Cut(X;f) fset: FSet{T} cut-of: cut(X;f;s) IdLnk: IdLnk Knd: Knd MaName: MaName consensus-state3: consensus-state3(T) consensus-rcv: consensus-rcv(V;A) divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_member: (x  l) l_contains: A  B reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) list: type List i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  nat: es-le: e loc e'  unit: Unit es-locl: (e <loc e') sq_type: SQType(T) pair: <a, b> Complete: Error :Complete,  Try: Error :Try,  D: Error :D,  btrue: tt MaAuto: Error :MaAuto
Lemmas :  cut-order_transitivity assert_elim decidable__equal_es-E-interface decidable__cand decidable__not decidable__equal_Id decidable__es-causl decidable__cut-order assert_witness cut-order_witness cut-of_wf fset-member_wf deq-member_wf sq_stable__assert bool_wf intensional-universe_wf is-prior-interface es-locl_wf cut-order_weakening-le es-le_wf es-causle-le es-le-prior-interface-val sq_stable_from_decidable decidable__es-causle es-causle_wf Id_wf es-causl_wf cut-order_wf es-E-interface_wf event-ordering+_wf event-ordering+_inc es-E_wf top_wf eclass_wf sys-antecedent_wf iff_wf assert_wf not_wf uall_wf cut-order-iff1 iff_functionality_wrt_iff rev_implies_wf es-base-E_wf subtype_rel_self member_wf es-E-interface-subtype_rel es-prior-interface_wf in-eclass_wf es-prior-interface_wf0 es-prior-interface_wf1 es-interface-subtype_rel2 subtype_rel_wf eclass-val_wf2 es-loc_wf false_wf ifthenelse_wf true_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).  \mforall{}a,b:E(X).
        (a  \mleq{}(X;f)  b
        \mLeftarrow{}{}\mRightarrow{}  (a  =  b)
                \mvee{}  (((\mneg{}(loc(f  b)  =  loc(b)))  \mwedge{}  (f  b  <  b))  \mwedge{}  a  \mleq{}(X;f)  f  b)
                \mvee{}  ((\muparrow{}b  \mmember{}\msubb{}  prior(X))  \mwedge{}  a  \mleq{}(X;f)  prior(X)(b)))


Date html generated: 2011_08_16-PM-05_56_08
Last ObjectModification: 2011_06_20-AM-01_39_08

Home Index