{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X). a,b:E(X).
      (a (X;f) b
       (a = b)
           ((f b < b)  a (X;f) f b)
           ((b  prior(X))  a (X;f) prior(X)(b))) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q or: P  Q and: P  Q apply: f a universe: Type equal: s = t
Definitions :  cut-order: a (X;f) b subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] all: x:A. B[x] iff: P  Q and: P  Q product: x:A  B[x] implies: P  Q function: x:A  B[x] or: P  Q union: left + right es-E-interface: E(X) sys-antecedent: sys-antecedent(es;Sys) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) universe: Type equal: s = t member: t  T es-eq-E: e = e' void: Void es-causle: e c e' infix_ap: x f y intensional-universe: IType es-eq: es-eq(es) record: record(x.T[x]) atom: Atom es-base-E: es-base-E(es) token: "$token" cand: A c B false: False fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) set: {x:A| B[x]}  record-select: r.x subtype_rel: A r B uimplies: b supposing a eclass-val: X(e) es-prior-interface: prior(X) in-eclass: e  X apply: f a limited-type: LimitedType true: True squash: T prop: rev_implies: P  Q fset-singleton: {x} fset-union: x  y ifthenelse: if b then t else f fi  es-causl: (e < e') assert: b fset-member: a  s cut-of: cut(X;f;s) fset: FSet{T} es-cut: Cut(X;f) append: as @ bs locl: locl(a) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) fset-filter: {x  s | P[x]} fset-intersection: a  b fset-remove: fset-remove(eq;y;s) fset-add: fset-add(eq;x;s) axiom: Ax natural_number: $n Knd: Knd IdLnk: IdLnk Id: Id so_apply: x[s] l_member: (x  l) label: ...$L... t f-subset: xs  ys l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-locl: (e <loc e') es-le: e loc e'  existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) decidable: Dec(P) nil: [] es-interface-pred: X-pred cons: [car / cdr] fset-closed: (s closed under fs) fpf-cap: f(x)?z filter: filter(P;l) set-equal: set-equal(T;x;y) list: type List quotient: x,y:A//B[x; y] deq: EqDecider(T) guard: {T} sq_type: SQType(T) pair: <a, b> bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b bool: unit: Unit int:
Lemmas :  iff_weakening_uiff bool_wf bnot_wf not_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert assert-es-eq-E-2 not_functionality_wrt_uiff es-eq-E_wf iff_functionality_wrt_iff member-fset-union or_functionality_wrt_uiff2 member-fset-singleton es-eq_wf-interface set-equal_wf fset-closed_wf es-interface-pred_wf2 decidable_wf decidable__fset-member es-causl_transitivity2 es-causl_irreflexivity es-causle_wf es-causle_weakening_eq uiff_inversion decidable__equal_es-E-interface fset-member_witness deq-member_wf iff_transitivity or_functionality_wrt_iff sq_stable_from_decidable decidable__es-causle es-causl_wf fset-member_wf cut-of_wf iff_wf ifthenelse_wf fset_wf fset-union_wf fset-singleton_wf assert_wf rev_implies_wf true_wf squash_wf es-cut_wf fset-member_wf-cut cut-of-singleton es-prior-interface_wf in-eclass_wf es-prior-interface_wf0 es-prior-interface_wf1 eclass-val_wf2 member_wf subtype_rel_wf false_wf es-base-E_wf subtype_rel_self intensional-universe_wf es-E-interface-subtype_rel es-interface-subtype_rel2 es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).  \mforall{}a,b:E(X).
        (a  \mleq{}(X;f)  b
        \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mvee{}  ((f  b  <  b)  \mwedge{}  a  \mleq{}(X;f)  f  b)  \mvee{}  ((\muparrow{}b  \mmember{}\msubb{}  prior(X))  \mwedge{}  a  \mleq{}(X;f)  prior(X)(b)))


Date html generated: 2011_08_16-PM-05_54_07
Last ObjectModification: 2011_06_20-AM-01_38_03

Home Index