{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [e:E(X)].
    (cut(X;f;{e})
    = if e  prior(X)
        then if f e = e
             then {e}
             else {e}  cut(X;f;{f e})
             fi   cut(X;f;{prior(X)(e)})
      if f e = e then {e}
      else {e}  cut(X;f;{f e})
      fi ) }

{ Proof }



Definitions occuring in Statement :  cut-of: cut(X;f;s) es-cut: Cut(X;f) es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq-E: e = e' es-eq: es-eq(es) ifthenelse: if b then t else f fi  uall: [x:A]. B[x] top: Top apply: f a universe: Type equal: s = t fset-singleton: {x} fset-union: x  y
Definitions :  fset: FSet{T} pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) axiom: Ax eclass-val: X(e) es-eq-E: e = e' es-eq: es-eq(es) fset-union: x  y es-prior-interface: prior(X) in-eclass: e  X fset-singleton: {x} cut-of: cut(X;f;s) es-cut: Cut(X;f) set: {x:A| B[x]}  es-E-interface: E(X) union: left + right sys-antecedent: sys-antecedent(es;Sys) subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t list: type List nil: [] es-interface-pred: X-pred cons: [car / cdr] prop: tl: tl(l) hd: hd(l) l_member: (x  l) implies: P  Q fset-member: a  s so_lambda: x.t[x] l_all: (xL.P[x]) fset-closed: (s closed under fs) false: False intensional-universe: IType guard: {T} sq_type: SQType(T) record: record(x.T[x]) limited-type: LimitedType void: Void bfalse: ff btrue: tt iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit bool: cand: A c B es-causle: e c e' f-subset: xs  ys filter: filter(P;l) fpf-cap: f(x)?z set-equal: set-equal(T;x;y) quotient: x,y:A//B[x; y] deq: EqDecider(T) true: True es-cut-add: c+e isl: isl(x) can-apply: can-apply(f;x) rev_implies: P  Q fset-filter: {x  s | P[x]} fset-intersection: a  b fset-remove: fset-remove(eq;y;s) fset-add: fset-add(eq;x;s) exists: x:A. B[x] or: P  Q empty-fset: {} cond-class: [X?Y] so_apply: x[s] eq_knd: a = b fpf-dom: x  dom(f) mem_empty: mem_empty{mem_empty_compseq_tag_def:o}(a; eq) union_empty: union_empty{union_empty_compseq_tag_def:o}(b; eq) MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  squash: T Knd: Knd IdLnk: IdLnk Id: Id l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P)
Lemmas :  sq_stable_from_decidable decidable__fset-closed uiff_inversion fset-member_witness f-subset_weakening deq_wf squash_wf empty-fset_wf empty-fset_wf-cut member-fset-union fset-member_wf-cut es-cut-union es-eq_wf fset-union-associative rev_implies_wf iff_wf cut-of-closed f-singleton-subset f-union-subset f-subset-union member-fset-singleton subtype_base_sq bool_subtype_base assert_elim true_wf deq-member_wf eclass-val_wf es-cut-add_wf set-equal_wf f-subset_antisymmetry f-subset_wf eclass-val_wf2 assert_wf not_wf bool_wf subtype_rel_wf es-prior-interface_wf es-interface-subtype_rel2 es-prior-interface_wf1 es-prior-interface_wf0 in-eclass_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert cut-of-property bnot_wf assert-es-eq-E-2 not_functionality_wrt_uiff es-eq-E_wf es-E-interface-subtype_rel intensional-universe_wf false_wf fset-closed_wf fset-member_wf l_all_wf l_member_wf es-eq_wf-interface es-interface-pred_wf2 member_wf es-cut_wf ifthenelse_wf fset_wf es-E-interface_wf fset-union_wf fset-singleton_wf cut-of_wf sys-antecedent_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf top_wf eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[e:E(X)].
    (cut(X;f;\{e\})
    =  if  e  \mmember{}\msubb{}  prior(X)  then  if  f  e  =  e  then  \{e\}  else  \{e\}  \mcup{}  cut(X;f;\{f  e\})  fi    \mcup{}  cut(X;f;\{prior(X)(e)\})
        if  f  e  =  e  then  \{e\}
        else  \{e\}  \mcup{}  cut(X;f;\{f  e\})
        fi  )


Date html generated: 2011_08_16-PM-05_53_42
Last ObjectModification: 2011_06_20-AM-01_37_55

Home Index