{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X).
      [P:Cut(X;f)  ]
        ((R:E(X)  E(X)  
           (Linorder(E(X);x,y.R[x;y])  (x,y:E(X).  Dec(R[x;y]))))
         P[{}]
         (c:Cut(X;f). e:E(X).
              (P[c]
               (P[c+e]) supposing 
                    (prior(X)(e)  c supposing e  prior(X) and 
                    f e  c supposing ((f e) = e))))
         (c:Cut(X;f). P[c])) }

{ Proof }



Definitions occuring in Statement :  es-cut-add: c+e es-cut: Cut(X;f) es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq: es-eq(es) linorder: Linorder(T;x,y.R[x; y]) assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t empty-fset: {} fset-member: a  s
Definitions :  cand: A c B so_lambda: x y.t[x; y] member: t  T uimplies: b supposing a so_apply: x[s] so_apply: x[s1;s2] and: P  Q exists: x:A. B[x] implies: P  Q prop: top: Top all: x:A. B[x] uall: [x:A]. B[x] false: False ge: i  j  le: A  B nat: not: A es-cut: Cut(X;f) es-cut-add: c+e rev_implies: P  Q iff: P  Q true: True squash: T or: P  Q so_lambda: x.t[x] es-E-interface: E(X) sys-antecedent: sys-antecedent(es;Sys) decidable: Dec(P) sq_stable: SqStable(P) uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) l_all: (xL.P[x]) fset-closed: (s closed under fs) subtype: S  T fset-add: fset-add(eq;x;s)
Lemmas :  eclass_wf sys-antecedent_wf decidable_wf linorder_wf empty-fset_wf-cut es-cut-add_wf eclass-val_wf2 top_wf event-ordering+_wf event-ordering+_inc es-E_wf es-interface-subtype_rel2 es-prior-interface_wf in-eclass_wf assert_wf fset-member_wf-cut not_wf es-E-interface_wf es-cut_wf fset-size_wf le_wf nat_wf ge_wf nat_properties es-eq_wf-interface empty-fset_wf decidable__equal_fset decidable__equal_es-E-interface fset_wf es-interface-pred_wf2 fset-closed_wf empty-fset-closed es-causl_wf fset-add-remove decidable__fset-closed sq_stable_from_decidable es-cut-remove fset-size-empty int_subtype_base subtype_base_sq fset-size-remove true_wf squash_wf l_member_wf cons_member member-fset-remove iff_weakening_uiff decidable__fset-member fset-remove_wf fset-member_wf fset-to-list exists_functionality_wrt_iff and_functionality_wrt_iff all_functionality_wrt_iff implies_functionality_wrt_iff Error :Girard-theorem2,  es-causl-maximal-exists

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:Cut(X;f)  {}\mrightarrow{}  \mBbbP{}]
            ((\mexists{}R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}.  (Linorder(E(X);x,y.R[x;y])  \mwedge{}  (\mforall{}x,y:E(X).    Dec(R[x;y]))))
            {}\mRightarrow{}  P[\{\}]
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  \mforall{}e:E(X).
                        (P[c]
                        {}\mRightarrow{}  (P[c+e])  supposing 
                                    (prior(X)(e)  \mmember{}  c  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)  and 
                                    f  e  \mmember{}  c  supposing  \mneg{}((f  e)  =  e))))
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  P[c]))


Date html generated: 2011_08_16-PM-05_52_53
Last ObjectModification: 2011_06_20-AM-01_37_29

Home Index