{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:sys-antecedent(es;X)].
  [c:Cut(X;f)]. [e:E(X)].
    fset-remove(es-eq(es);e;c)  Cut(X;f) 
    supposing e':E(X). (e'  c  ((e < e'))) }

{ Proof }



Definitions occuring in Statement :  es-cut: Cut(X;f) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') es-eq: es-eq(es) uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: A implies: P  Q member: t  T universe: Type fset-remove: fset-remove(eq;y;s) fset-member: a  s
Definitions :  quotient: x,y:A//B[x; y] nil: [] es-interface-pred: X-pred cons: [car / cdr] l_member: (x  l) so_lambda: x.t[x] fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) decide: case b of inl(x) =s[x] | inr(y) =t[y] tl: tl(l) hd: hd(l) l_all: (xL.P[x]) fset-closed: (s closed under fs) void: Void false: False axiom: Ax es-eq: es-eq(es) fset-remove: fset-remove(eq;y;s) assert: b prop: fset: FSet{T} fset-member: a  s es-causl: (e < e') not: A implies: P  Q uimplies: b supposing a es-E-interface: E(X) set: {x:A| B[x]}  es-cut: Cut(X;f) union: left + right sys-antecedent: sys-antecedent(es;Sys) subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  list: type List es-causle: e c e' sq_stable: SqStable(P) so_apply: x[s] or: P  Q guard: {T} sq_type: SQType(T) bool: int: nequal: a  b  T  qless: r < s rationals: fset-filter: {x  s | P[x]} fset-singleton: {x} fset-intersection: a  b fset-union: x  y limited-type: LimitedType rev_implies: P  Q fset-add: fset-add(eq;x;s) cand: A c B nat: deq-member: deq-member(eq;x;L) true: True l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-locl: (e <loc e') es-le: e loc e'  existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b decidable: Dec(P) iff: P  Q uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y squash: T fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) i-member: r  I pair: <a, b> atom_eq: if a=b then c else d record: record(x.T[x]) Id: Id length: ||as|| ycomb: Y list_ind: list_ind def add: n + m select: l[i] less: if (a) < (b)  then c  else d subtract: n - m can-apply: can-apply(f;x) isl: isl(x) set-equal: set-equal(T;x;y) reduce: reduce(f;k;as) eqof: eqof(d) mk_deq: mk_deq(p) es-prior-interface: prior(X) local-pred-class: local-pred-class(P) es-local-pred: last(P) es-first: first(e) es-pred?: es-pred?(es;e) list_accum: list_accum(x,a.f[x; a];y;l) es-bcausl: es-bcausl(es;e;e') inl: inl x  inr: inr x  it: filter: filter(P;l) id-deq: IdDeq atom2-deq: Atom2Deq es-loc: loc(e) es-pred-list: es-pred-list(es;e) pi1: fst(t) spread: spread def es-pred: pred(e) outl: outl(x) eclass-val: X(e) do-apply: do-apply(f;x) bor: p q band: p  q bimplies: p  q bnot: b eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) eq_type: eq_type(T;T') dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b grp_blt: a < b set_blt: a < b null: null(as) eq_int: (i = j) le_int: i z j lt_int: i <z j eq_bool: p =b q in-eclass: e  X btrue: tt
Lemmas :  bool_subtype_base bool_wf assert_elim in-eclass_wf nil_member decidable__es-causle cons_member rev_implies_wf iff_wf or_functionality_wrt_iff iff_transitivity es-causle_wf es-E-interface-subtype_rel true_wf deq-member_wf ifthenelse_wf false_wf assert_wf fset-member_witness decidable__fset-closed sq_stable_from_decidable es-interface-pred_wf iff_weakening_uiff member-fset-remove subtype_base_sq set_subtype_base uiff_inversion es-interface-pred_wf2 es-E-interface_wf fset-closed_wf es-eq_wf-interface fset-remove_wf subtype_rel_wf fset_wf es-cut_wf member_wf event-ordering+_inc subtype_rel_self es-E_wf es-causl_wf not_wf fset-member_wf-cut fset-member_wf sys-antecedent_wf event-ordering+_wf top_wf eclass_wf l_all_wf l_member_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[c:Cut(X;f)].
\mforall{}[e:E(X)].
    fset-remove(es-eq(es);e;c)  \mmember{}  Cut(X;f)  supposing  \mforall{}e':E(X).  (e'  \mmember{}  c  {}\mRightarrow{}  (\mneg{}(e  <  e')))


Date html generated: 2011_08_16-PM-05_52_18
Last ObjectModification: 2011_06_20-AM-01_37_13

Home Index