{ [Info:Type]
    es:EO+(Info). A:Type. X:EClass(A).
      P:E  A  
       ((e:E. Dec(a:A. P[e;a]))
        (e:E. ((e  X  a:A. P[e;a])  P[e;X(e)] supposing e  X))) }

{ Proof }



Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  intensional-universe: IType so_lambda: x.t[x] tag-by: zT fset: FSet{T} isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) Knd: Knd IdLnk: IdLnk Id: Id cond-class: [X?Y] so_apply: x[s] guard: {T} eq_knd: a = b fpf-dom: x  dom(f) bool: limited-type: LimitedType fpf: a:A fp-B[a] int_seg: {i..j} divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) list: type List i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  nat: infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) unit: Unit es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') or: P  Q axiom: Ax pair: <a, b> void: Void false: False true: True rev_implies: P  Q implies: P  Q atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  top: Top cand: A c B union: left + right subtype: S  T member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B decidable: Dec(P) event_ordering: EO es-E: E iff: P  Q uall: [x:A]. B[x] so_lambda: x y.t[x; y] prop: eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) universe: Type exists: x:A. B[x] all: x:A. B[x] function: x:A  B[x] product: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] so_apply: x[s1;s2] apply: f a eclass-val: X(e) equal: s = t in-eclass: e  X assert: b and: P  Q lambda: x.A[x]
Lemmas :  decidable_functionality decidable__assert assert_wf decidable_wf not_wf assert_witness es-E_wf event-ordering+_inc subtype_rel_self es-base-E_wf event-ordering+_wf eclass-val_wf es-interface-top member_wf eclass_wf in-eclass_wf iff_wf subtype_rel_wf false_wf ifthenelse_wf true_wf rev_implies_wf sq_stable__assert bool_wf intensional-universe_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}A:Type.  \mforall{}X:EClass(A).
        \mexists{}P:E  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
          ((\mforall{}e:E.  Dec(\mexists{}a:A.  P[e;a]))
          \mwedge{}  (\mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A.  P[e;a])  \mwedge{}  P[e;X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  X)))


Date html generated: 2011_08_16-PM-04_07_11
Last ObjectModification: 2011_06_20-AM-00_41_08

Home Index