{ [Info,A1,B1,A2,B2,C:Type]. [X1:EClass(A1)]. [X2:EClass(A2)]. [b1:B1].
  [b2:B2]. [acc1:B1  A1  B1]. [acc2:B2  A2  B2]. [F1:B1  bag(C)].
  [F2:B2  bag(C)].
    (F1[es-interface-accum(acc1;b1;X1)]
       = F2[es-interface-accum(acc2;b2;X2)]) supposing 
       ((a:B1. b:B2.
           (((F1 a) = (F2 b))
            (es:EO+(Info). e:E.
                 ((e  X1)
                  (e  X1)
                  (F1[acc1 a X1(e)] = F2[acc2 b X2(e)]))))) and 
       (F1[b1] = F2[b2]) and 
       (es:EO+(Info). e:E.  (e  X1  e  X2))) }

{ Proof }



Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t bag: bag(T)
Definitions :  axiom: Ax es-interface-accum: es-interface-accum(f;x;X) es-filter-image: f[X] guard: {T} true: True false: False es-E-interface: E(X) eclass-val: X(e) apply: f a so_apply: x[s] limited-type: LimitedType fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B top: Top rev_implies: P  Q in-eclass: e  X implies: P  Q product: x:A  B[x] and: P  Q prop: assert: b iff: P  Q uimplies: b supposing a bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] universe: Type eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T equal: s = t so_lambda: x y.t[x; y] filter: filter(P;l) permutation: permutation(T;L1;L2) btrue: tt es-loc: loc(e) sq_type: SQType(T) list_accum: list_accum(x,a.f[x; a];y;l) sqequal: s ~ t es-prior-interface: prior(X) exists: x:A. B[x] es-interface-at: X@i intensional-universe: IType so_lambda: x.t[x] tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T cond-class: [X?Y] cand: A c B void: Void suptype: suptype(S; T) atom: Atom es-base-E: es-base-E(es) token: "$token" bool: IdLnk: IdLnk Id: Id rationals: append: as @ bs locl: locl(a) Knd: Knd quotient: x,y:A//B[x; y] sq_stable: SqStable(P) union: left + right or: P  Q eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) pair: <a, b> MaAuto: Error :MaAuto,  es-interface-predecessors: (X)(e) list: type List Subst': Error :Subst',  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  int_eq: if a=b  then c  else d eq_int: (i = j) Complete: Error :Complete,  Try: Error :Try
Lemmas :  list_accum_equality es-interface-predecessors-equal es-filter-image_wf es-interface-accum_wf es-base-E_wf subtype_rel_self filter-image_functionality top_wf rev_implies_wf sq_stable__assert es-interface-subtype_rel bool_wf intensional-universe_wf is-interface-accum es-interface-accum-val es-E-interface_wf subtype_base_sq list_subtype_base set_subtype_base es-interface-predecessors_wf Id_wf list-equal-set2 list_accum_wf bool_subtype_base assert_elim es-loc_wf permutation_wf assert_wf bag_wf event-ordering+_wf es-E_wf es-interface-top subtype_rel_wf eclass_wf member_wf in-eclass_wf iff_wf event-ordering+_inc eclass-val_wf false_wf ifthenelse_wf true_wf

\mforall{}[Info,A1,B1,A2,B2,C:Type].  \mforall{}[X1:EClass(A1)].  \mforall{}[X2:EClass(A2)].  \mforall{}[b1:B1].  \mforall{}[b2:B2].  \mforall{}[acc1:B1
                                                                                                                                                                                      {}\mrightarrow{}  A1
                                                                                                                                                                                      {}\mrightarrow{}  B1].
\mforall{}[acc2:B2  {}\mrightarrow{}  A2  {}\mrightarrow{}  B2].  \mforall{}[F1:B1  {}\mrightarrow{}  bag(C)].  \mforall{}[F2:B2  {}\mrightarrow{}  bag(C)].
    (F1[es-interface-accum(acc1;b1;X1)]  =  F2[es-interface-accum(acc2;b2;X2)])  supposing 
          ((\mforall{}a:B1.  \mforall{}b:B2.
                  (((F1  a)  =  (F2  b))
                  {}\mRightarrow{}  (\mforall{}es:EO+(Info).  \mforall{}e:E.
                              ((\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (F1[acc1  a  X1(e)]  =  F2[acc2  b  X2(e)])))))  and 
          (F1[b1]  =  F2[b2])  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)))


Date html generated: 2011_08_16-PM-05_17_47
Last ObjectModification: 2011_06_20-AM-01_19_27

Home Index