{ [A,V:Type]. [B:A  Type].
    eq:EqDecider(A). f,h,g:a:A fp-B[a] List. R:V List  V  .
      fpf-union-compatible(A;V;x.B[x];eq;R;f;g)
       h  g
       h  fpf-union-join(eq;R;f;g) 
      supposing fpf-single-valued(A;eq;x.B[x];V;g) 
    supposing a:A. (B[a] r V) }

{ Proof }



Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-contains: f  g fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g) fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g) fpf: a:A fp-B[a] subtype_rel: A r B bool: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q function: x:A  B[x] list: type List universe: Type deq: EqDecider(T)
Definitions :  append: as @ bs ext-eq: A  B rev_subtype_rel: A r B rev_uimplies: rev_uimplies(P;Q) tag-by: zT rev_implies: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z filter: filter(P;l) nil: [] eqof: eqof(d) suptype: suptype(S; T) subtype: S  T intensional-universe: IType limited-type: LimitedType pair: <a, b> union: left + right or: P  Q guard: {T} top: Top fpf-dom: x  dom(f) fpf-ap: f(x) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) axiom: Ax set: {x:A| B[x]}  nat: exists: x:A. B[x] l_member: (x  l) l_all: (xL.P[x]) l_contains: A  B void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b product: x:A  B[x] cand: A c B prop: so_lambda: x.t[x] fpf-union-join: fpf-union-join(eq;R;f;g) fpf-contains: f  g fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g) implies: P  Q fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g) isect: x:A. B[x] bool: list: type List fpf: a:A fp-B[a] deq: EqDecider(T) lambda: x.A[x] apply: f a so_apply: x[s] subtype_rel: A r B all: x:A. B[x] uimplies: b supposing a uall: [x:A]. B[x] function: x:A  B[x] universe: Type member: t  T equal: s = t MaAuto: Error :MaAuto,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  btrue: tt sq_type: SQType(T) bfalse: ff eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit map: map(f;as) cons: [car / cdr] hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] fpf-union: fpf-union(f;g;eq;R;x) sqequal: s ~ t SplitOn: Error :SplitOn,  CollapseTHENM: Error :CollapseTHENM
Lemmas :  fpf-union-join-ap fpf-union-contains2 nat_wf l_member_subtype eqtt_to_assert iff_weakening_uiff uiff_transitivity eqff_to_assert assert_of_bnot not_wf bnot_wf fpf-union-join-dom subtype_base_sq bool_subtype_base assert_elim assert_wf l_contains_wf fpf-contains_wf fpf-trivial-subtype-top subtype_rel_wf fpf_wf top_wf member_wf fpf-dom_wf fpf-ap_wf l_member_wf fpf-union-compatible_wf fpf-single-valued_wf bool_wf deq_wf intensional-universe_wf assert_witness false_wf ifthenelse_wf true_wf fpf-union-join_wf l_all_wf l_contains_weakening list-subtype ext-eq_inversion implies_weakening_uimplies subtype_rel_functionality_wrt_implies subtype_rel_weakening ext-eq_weakening

\mforall{}[A,V:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:V  List  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbB{}.
        fpf-union-compatible(A;V;x.B[x];eq;R;f;g)  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  g  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g) 
        supposing  fpf-single-valued(A;eq;x.B[x];V;g) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  V)


Date html generated: 2011_08_10-AM-08_02_12
Last ObjectModification: 2011_06_18-AM-08_20_16

Home Index