Nuprl Lemma : fpf-normalize-dom

[A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [g:x:A fp-B[x]]. [x:A].  (x  dom(fpf-normalize(eq;g)) ~ x  dom(g))


Proof not projected




Definitions occuring in Statement :  fpf-normalize: fpf-normalize(eq;g) fpf-dom: x  dom(f) fpf: a:A fp-B[a] uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type sqequal: s ~ t deq: EqDecider(T)
Definitions :  so_apply: x[s] fpf-dom: x  dom(f) fpf-normalize: fpf-normalize(eq;g) deq-member: deq-member(eq;x;L) pi1: fst(t) reduce: reduce(f;k;as) fpf-join: f  g fpf-single: x : v pi2: snd(t) fpf-empty: append: as @ bs member: t  T top: Top all: x:A. B[x] implies: P  Q so_lambda: x.t[x] bor: p q eqof: eqof(d) bfalse: ff btrue: tt ifthenelse: if b then t else f fi  guard: {T} and: P  Q bnot: b assert: b false: False true: True not: A fpf: a:A fp-B[a] uall: [x:A]. B[x] deq: EqDecider(T) bool: unit: Unit uimplies: b supposing a uiff: uiff(P;Q) iff: P  Q sq_type: SQType(T) rev_implies: P  Q it: prop:
Lemmas :  top_wf fpf_wf deq_wf eqof_wf bool_wf uiff_transitivity equal_wf assert_wf eqtt_to_assert assert-deq bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff reduce_wf filter_wf bor_wf bfalse_wf member_filter and_wf not_functionality_wrt_iff btrue_wf bnot_thru_bor filter_functionality band_wf assert-deq-member iff_weakening_uiff l_member_wf iff_transitivity deq-member_wf bool_subtype_base subtype_base_sq and_functionality_wrt_uiff2 assert_of_band true_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    (x  \mmember{}  dom(fpf-normalize(eq;g))  \msim{}  x  \mmember{}  dom(g))


Date html generated: 2012_01_23-AM-11_56_16
Last ObjectModification: 2011_12_10-PM-12_59_32

Home Index