{ [Info:Type]
    es:EO+(Info)
      [A:Type]
        X:EClass(A)
          [S:Type]
            init:S. f:S  A  S. test:S  A  . nxt:S  A  S. e:E.
              (e  Threshold(init;f;test;nxt;X)
               (e  X)
                   let v = X(e) in
                     let s = if e  prior(Threshold(init;f;test;nxt;X))
                             then let e' = prior(Threshold(init;f;test;
                                                           nxt;X))(e) in
                                      list_accum(s,v.f s v;
                                                 nxt 
                                                 Threshold(init;f;test;
                                                           nxt;X)(e');
                                                 X(e', e))
                             else list_accum(s,v.f s v;init;X(<e))
                             fi  in
                     (test s v)) }

{ Proof }



Definitions occuring in Statement :  es-threshold: Threshold(init;f;test;nxt;X) es-prior-interface: prior(X) es-prior-interval-vals: X(e1, e2) es-prior-interface-vals: X(<e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b ifthenelse: if b then t else f fi  bool: let: let uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q and: P  Q apply: f a function: x:A  B[x] product: x:A  B[x] universe: Type list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  cand: A c B Knd: Knd IdLnk: IdLnk rationals: sq_type: SQType(T) es-local-pred: last(P) es-rec-class: es-rec-class fpf-cap: f(x)?z filter: filter(P;l) list: type List bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) set_eq: = set_le: grp_eq: = rng_eq: = real: grp_car: |g| nat: quotient: x,y:A//B[x; y] axiom: Ax rev_implies: P  Q natural_number: $n bag-size: bag-size(bs) es-prior-interface: prior(X) es-threshold: Threshold(init;f;test;nxt;X) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} es-loc: loc(e) Id: Id es-causl: (e < e') es-locl: (e <loc e') cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) limited-type: LimitedType prop: bfalse: ff btrue: tt uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) subtype_rel: A r B atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) uimplies: b supposing a top: Top dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) set: {x:A| B[x]}  record-select: r.x lambda: x.A[x] subtype: S  T event_ordering: EO es-E: E bool: event-ordering+: EO+(Info) iff: P  Q implies: P  Q and: P  Q assert: b decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True member: t  T equal: s = t false: False void: Void universe: Type all: x:A. B[x] function: x:A  B[x] eclass: EClass(A[eo; e]) isect: x:A. B[x] uall: [x:A]. B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  RepeatFor: Error :RepeatFor,  in-eclass: e  X Auto: Error :Auto,  empty-bag: {} pair: <a, b> single-bag: {x} apply: f a ifthenelse: if b then t else f fi  es-prior-interval-vals: X(e1, e2) list_accum: list_accum(x,a.f[x; a];y;l) let: let eclass-val: X(e) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) es-prior-interface-vals: X(<e) so_lambda: x y.t[x; y] product: x:A  B[x]
Lemmas :  bag_wf es-interface-top member_wf eclass_wf in-eclass_wf ifthenelse_wf es-E_wf assert_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf eclass-val_wf es-prior-interface-vals_wf list_accum_wf empty-bag_wf single-bag_wf is-rec-class bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf es-locl_wf es-prior-interval-vals_wf subtype_rel_wf iff_wf true_wf assert_witness false_wf es-threshold_wf es-prior-interface_wf1 bag-size_wf nat_wf es-prior-interface_wf es-interface-subtype_rel2 top_wf es-E-interface_wf list-subtype l_member_wf eclass-val_wf2 es-interface-val_wf2 es-interface-val_wf assert_elim subtype_base_sq bool_subtype_base rev_implies_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[A:Type]
            \mforall{}X:EClass(A)
                \mforall{}[S:Type]
                    \mforall{}init:S.  \mforall{}f:S  {}\mrightarrow{}  A  {}\mrightarrow{}  S.  \mforall{}test:S  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}nxt:S  \mtimes{}  A  {}\mrightarrow{}  S.  \mforall{}e:E.
                        (\muparrow{}e  \mmember{}\msubb{}  Threshold(init;f;test;nxt;X)
                        \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X)
                                \mwedge{}  let  v  =  X(e)  in
                                      let  s  =  if  e  \mmember{}\msubb{}  prior(Threshold(init;f;test;nxt;X))
                                                      then  let  e'  =  prior(Threshold(init;f;test;nxt;X))(e)  in
                                                                        list\_accum(s,v.f  s  v;
                                                                                              nxt  Threshold(init;f;test;nxt;X)(e');
                                                                                              X(e',  e))
                                                      else  list\_accum(s,v.f  s  v;init;X(<e))
                                                      fi    in
                                      \muparrow{}(test  s  v))


Date html generated: 2011_08_16-PM-05_11_11
Last ObjectModification: 2011_06_20-AM-01_13_23

Home Index