{ 
[T:Type]
    
g:LabeledGraph(T). (lg-acyclic(g) 

 SWellFounded(lg-edge(g;a;b))) }
{ Proof }
Definitions occuring in Statement : 
lg-acyclic: lg-acyclic(g), 
lg-edge: lg-edge(g;a;b), 
lg-size: lg-size(g), 
labeled-graph: LabeledGraph(T), 
int_seg: {i..j
}, 
uall:
[x:A]. B[x], 
all:
x:A. B[x], 
iff: P 

 Q, 
natural_number: $n, 
universe: Type, 
strongwellfounded: SWellFounded(R[x; y])
Definitions : 
uall:
[x:A]. B[x], 
member: t 
 T, 
all:
x:A. B[x], 
implies: P 
 Q, 
lg-acyclic: lg-acyclic(g), 
not:
A, 
false: False, 
prop:
, 
ge: i 
 j , 
le: A 
 B, 
nat:
, 
so_lambda: 
x.t[x], 
rev_implies: P 
 Q, 
iff: P 

 Q, 
and: P 
 Q, 
strongwellfounded: SWellFounded(R[x; y]), 
exists:
x:A. B[x], 
int_seg: {i..j
}, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
lelt: i 
 j < k, 
bfalse: ff, 
squash:
T, 
true: True, 
so_lambda: 
x y.t[x; y], 
infix_ap: x f y, 
decidable: Dec(P), 
or: P 
 Q, 
uimplies: b supposing a, 
so_apply: x[s], 
bool:
, 
unit: Unit, 
sq_type: SQType(T), 
guard: {T}, 
so_apply: x[s1;s2], 
it:
, 
lg-connected: lg-connected(g;a;b)
Lemmas : 
nat_wf, 
lg-connected_wf, 
int_seg_wf, 
lg-size_wf, 
lg-acyclic_wf, 
labeled-graph_wf, 
nat_properties, 
ge_wf, 
decidable__lt, 
lg-acyclic-has-source, 
iff_weakening_uiff, 
assert_wf, 
lg-is-source_wf, 
le_wf, 
uall_wf, 
not_wf, 
lg-edge_wf, 
assert-lg-is-source, 
lg-remove_wf, 
lg-size-remove, 
lg-acyclic-remove, 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
add-nat, 
le_int_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
eq_int_wf, 
assert_of_eq_int, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
lg-edge-remove, 
subtype_base_sq, 
int_subtype_base, 
strongwellfounded_wf, 
rel_plus_strongwellfounded
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))
Date html generated:
2011_08_16-PM-06_42_21
Last ObjectModification:
2011_06_20-AM-02_01_12
Home
Index