{ [T:Type]
    g:LabeledGraph(T). (lg-acyclic(g)  SWellFounded(lg-edge(g;a;b))) }

{ Proof }



Definitions occuring in Statement :  lg-acyclic: lg-acyclic(g) lg-edge: lg-edge(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q natural_number: $n universe: Type strongwellfounded: SWellFounded(R[x; y])
Definitions :  uall: [x:A]. B[x] member: t  T all: x:A. B[x] implies: P  Q lg-acyclic: lg-acyclic(g) not: A false: False prop: ge: i  j  le: A  B nat: so_lambda: x.t[x] rev_implies: P  Q iff: P  Q and: P  Q strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] int_seg: {i..j} ifthenelse: if b then t else f fi  btrue: tt lelt: i  j < k bfalse: ff squash: T true: True so_lambda: x y.t[x; y] infix_ap: x f y decidable: Dec(P) or: P  Q uimplies: b supposing a so_apply: x[s] bool: unit: Unit sq_type: SQType(T) guard: {T} so_apply: x[s1;s2] it: lg-connected: lg-connected(g;a;b)
Lemmas :  nat_wf lg-connected_wf int_seg_wf lg-size_wf lg-acyclic_wf labeled-graph_wf nat_properties ge_wf decidable__lt lg-acyclic-has-source iff_weakening_uiff assert_wf lg-is-source_wf le_wf uall_wf not_wf lg-edge_wf assert-lg-is-source lg-remove_wf lg-size-remove lg-acyclic-remove lt_int_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_lt_int add-nat le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int eq_int_wf assert_of_eq_int assert_of_bnot not_functionality_wrt_uiff ifthenelse_wf squash_wf true_wf lg-edge-remove subtype_base_sq int_subtype_base strongwellfounded_wf rel_plus_strongwellfounded

\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))


Date html generated: 2011_08_16-PM-06_42_21
Last ObjectModification: 2011_06_20-AM-02_01_12

Home Index