Nuprl Lemma : lg-acyclic-has-source

[T:Type]. g:LabeledGraph(T). (i:lg-size(g). (lg-is-source(g;i))) supposing (lg-acyclic(g) and (0 < lg-size(g)))


Proof not projected




Definitions occuring in Statement :  lg-is-source: lg-is-source(g;i) lg-acyclic: lg-acyclic(g) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) assert: b int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] less_than: a < b natural_number: $n universe: Type
Definitions :  subtype: S  T true: True btrue: tt bfalse: ff null: null(as) ifthenelse: if b then t else f fi  lg-edge: lg-edge(g;a;b) or: P  Q so_lambda: x.t[x] nat: false: False implies: P  Q not: A member: t  T lg-is-source: lg-is-source(g;i) assert: b exists: x:A. B[x] lg-acyclic: lg-acyclic(g) uimplies: b supposing a all: x:A. B[x] uall: [x:A]. B[x] pi1: fst(t) and: P  Q lelt: i  j < k le: A  B int_seg: {i..j} nat_plus: squash: T guard: {T} rev_implies: P  Q iff: P  Q uiff: uiff(P;Q) unit: Unit bool: so_apply: x[s] decidable: Dec(P) prop: sq_exists: x:{A| B[x]} sq_type: SQType(T) it:
Lemmas :  labeled-graph_wf lg-acyclic_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_int_wf cons_member l_member_wf exists_wf not_wf lg-in-edges_wf assert_of_lt_int eqtt_to_assert less_than_wf equal_wf uiff_transitivity bool_wf lt_int_wf decidable__lg-edge lg-edge_wf decidable__assert le_wf lg-is-source_wf assert_wf decidable__ex_int_seg nat_wf lg-size_wf int_seg_wf lg-connected_wf all_wf sq_stable__equal lelt_wf fun_exp_wf pigeon-hole-implies decidable__lt true_wf squash_wf int_subtype_base subtype_base_sq and_wf

\mforall{}[T:Type]
    \mforall{}g:LabeledGraph(T)
        (\mexists{}i:\mBbbN{}lg-size(g).  (\muparrow{}lg-is-source(g;i)))  supposing  (lg-acyclic(g)  and  (0  <  lg-size(g)))


Date html generated: 2012_01_23-PM-12_38_31
Last ObjectModification: 2011_12_14-PM-11_31_20

Home Index