{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [X:EClass(A)]. [Y:EClass(B)].
  [e:E].
    (X | Y)(e) = ((X) | (Y))(e) 
    supposing (e  (X | Y))  Singlevalued(X)  Singlevalued(Y) }

{ Proof }



Definitions occuring in Statement :  es-or-latest: (X | Y) es-latest-val: (X) es-interface-or: (X | Y) sv-class: Singlevalued(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] and: P  Q universe: Type equal: s = t one_or_both: one_or_both(A;B)
Definitions :  iff: P  Q bool: atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) cand: A c B apply: f a so_apply: x[s] implies: P  Q or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) bag: bag(T) so_lambda: x.t[x] union: left + right subtype: S  T lambda: x.A[x] top: Top in-eclass: e  X pair: <a, b> fpf: a:A fp-B[a] void: Void false: False record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] axiom: Ax es-latest-val: (X) es-interface-or: (X | Y) es-or-latest: (X | Y) eclass-val: X(e) one_or_both: one_or_both(A;B) prop: assert: b sv-class: Singlevalued(X) product: x:A  B[x] and: P  Q event_ordering: EO es-E: E uimplies: b supposing a equal: s = t event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} empty-bag: {} one_or_both_ind_oobright: one_or_both_ind_oobright_compseq_tag_def oobright-rval: oobright-rval(x) inl: inl x  inr: inr x  single-bag: {x} bag-only: only(bs) one_or_both_ind_oobleft: one_or_both_ind_oobleft_compseq_tag_def oobleft-lval: oobleft-lval(x) oobboth?: oobboth?(x) oobleft?: oobleft?(x) oobright?: oobright?(x) one_or_both_ind_oobboth: one_or_both_ind_oobboth_compseq_tag_def oobboth-bval: oobboth-bval(x) bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit oob-apply: oob-apply(xs;ys) primed-class: Prior(X) es-interface-union: X+Y latest-pair: (X&Y) eclass-compose2: eclass-compose2(f;X;Y) eclass-compose4: eclass-compose4(f;X;Y;Z;V) es-prior-val: (X)' oobboth: oobboth(bval) squash: T true: True so_apply: x[s1;s2] sq_type: SQType(T) sqequal: s ~ t oobleft: oobleft(lval) oobright: oobright(rval)
Lemmas :  oobright_wf oobleft_wf false_wf ifthenelse_wf subtype_base_sq primed-class-prior-val squash_wf true_wf es-prior-val_wf primed-class_wf oobboth_wf not_wf bnot_wf bool_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert es-latest-val_wf eclass-val_wf es-or-latest_wf es-interface-or_wf one_or_both_wf assert_wf sv-class_wf es-E_wf eclass_wf event-ordering+_wf in-eclass_wf event-ordering+_inc member_wf subtype_rel_wf es-interface-top uall_wf es-interface-subtype_rel2 es-base-E_wf subtype_rel_self top_wf is-or-latest

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[e:E].
    (X  |\msupminus{}  Y)(e)  =  ((X)\msupminus{}  |  (Y)\msupminus{})(e)  supposing  (\muparrow{}e  \mmember{}\msubb{}  (X  |\msupminus{}  Y))  \mwedge{}  Singlevalued(X)  \mwedge{}  Singlevalued(Y)


Date html generated: 2011_08_16-PM-06_06_19
Last ObjectModification: 2011_06_20-AM-01_47_52

Home Index