{ [Info,T:Type]. [X:EClass(T)].  Prior(X) = (X)' supposing Singlevalued(X) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' primed-class: Prior(X) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: b supposing a uall: [x:A]. B[x] universe: Type equal: s = t
Definitions :  record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b apply: f a eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] top: Top pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) void: Void false: False le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] uimplies: b supposing a so_lambda: x y.t[x; y] prop: isect: x:A. B[x] axiom: Ax primed-class: Prior(X) es-prior-val: (X)' sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) universe: Type member: t  T equal: s = t CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Try: Error :Try,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  tactic: Error :tactic,  es-local-pred: last(P) eclass-val: X(e) in-eclass: e  X local-pred-class: local-pred-class(P) es-prior-interface: prior(X) RepUR: Error :RepUR,  empty-bag: {} bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag-only: only(bs) single-bag: {x} bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) eq_int: (i = j) cand: A c B atom: Atom es-base-E: es-base-E(es) token: "$token" infix_ap: x f y es-causl: (e < e') bool: real: grp_car: |g| int: nat: bag-size: bag-size(bs) natural_number: $n lt_int: i <z j or: P  Q union: left + right sq_exists: x:{A| B[x]} implies: P  Q es-locl: (e <loc e') D: Error :D,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  record: record(x.T[x]) so_lambda: x.t[x] sq_type: SQType(T) Subst': Error :Subst',  ExRepD: Error :ExRepD,  es-loc: loc(e) Id: Id rev_uimplies: rev_uimplies(P;Q) le_int: i z j bor: p q band: p  q bimplies: p  q bnot: b es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] grp_blt: a < b set_blt: a < b null: null(as) Complete: Error :Complete,  THENM: Error :THENM,  it: true: True bfalse: ff limited-type: LimitedType btrue: tt unit: Unit squash: T guard: {T} rev_implies: P  Q iff: P  Q sqequal: s ~ t es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) nequal: a  b  T 
Lemmas :  nequal_wf neg_assert_of_eq_int rev_implies_wf iff_wf all_functionality_wrt_iff eq_int_eq_true sq_stable__not sq_stable__all sq_stable__assert sq_stable__and decidable__es-locl sq_stable_from_decidable sq_stable_wf bag-size-one bool_subtype_base not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert squash_wf assert_functionality_wrt_uiff iff_weakening_uiff implies_functionality_wrt_iff sv-class-iff bnot_wf assert_elim false_wf ifthenelse_wf true_wf assert_of_eq_int assert_of_lt_int es-loc_wf es-locl-total Id_wf subtype_base_sq set_subtype_base assert_wf not_wf es-locl_wf lt_int_wf nat_wf bag-size_wf es-local-pred_wf bool_wf es-base-E_wf subtype_rel_self eq_int_wf bag-only_wf single-bag_wf empty-bag_wf es-E_wf bag_wf eclass_wf es-prior-val_wf primed-class_wf es-interface-top subtype_rel_wf event-ordering+_wf member_wf event-ordering+_inc sv-class_wf

\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].    Prior(X)  =  (X)'  supposing  Singlevalued(X)


Date html generated: 2011_08_16-PM-04_50_46
Last ObjectModification: 2011_06_20-AM-01_08_42

Home Index