{ [Info,T:Type]. [X,Y:EClass(T)]. [es:EO+(Info)]. [e:E].
    (Prior(X) es e) = (Prior(Y) es e) 
    supposing e':E. ((e' <loc e)  ((X es e') = (Y es e'))) }

{ Proof }



Definitions occuring in Statement :  primed-class: Prior(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q apply: f a universe: Type equal: s = t bag: bag(T)
Definitions :  es-loc: loc(e) es-le: e loc e'  es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x]) so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) filter: filter(P;l) permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] es-E-interface: E(X) Id: Id atom: Atom es-base-E: es-base-E(es) token: "$token" rev_implies: P  Q iff: P  Q es-pred: pred(e) bag-size: bag-size(bs) empty-bag: {} bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-first: first(e) bnot: b unit: Unit union: left + right bool: sqequal: s ~ t top: Top true: True squash: T es-causl: (e < e') real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False natural_number: $n int: nat: exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) lambda: x.A[x] limited-type: LimitedType subtype: S  T pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax primed-class: Prior(X) apply: f a prop: es-locl: (e <loc e') bag: bag(T) implies: P  Q function: x:A  B[x] all: x:A. B[x] uimplies: b supposing a equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E event-ordering+: EO+(Info) event_ordering: EO MaAuto: Error :MaAuto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  tactic: Error :tactic
Lemmas :  eclass_wf event-ordering+_wf event-ordering+_inc es-E_wf bag_wf member_wf es-locl_wf primed-class_wf es-causl-swellfnd nat_wf nat_properties ge_wf le_wf es-causl_wf primed-class-cases subtype_rel_wf es-interface-top ifthenelse_wf bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf es-first_wf empty-bag_wf iff_wf rev_implies_wf true_wf squash_wf lt_int_wf bag-size_wf es-pred_wf es-base-E_wf subtype_rel_self Id_wf es-pred-locl permutation_wf assert_of_lt_int assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf es-pred-causl es-locl_transitivity2 es-le_weakening

\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (Prior(X)  es  e)  =  (Prior(Y)  es  e)  supposing  \mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  ((X  es  e')  =  (Y  es  e')))


Date html generated: 2011_08_16-PM-05_04_56
Last ObjectModification: 2011_06_20-AM-01_09_56

Home Index