Nuprl Lemma : C_Struct-fields_wf
∀[v:C_TYPE()]. C_Struct-fields(v) ∈ (Atom × C_TYPE()) List supposing ↑C_Struct?(v)
Proof
Definitions occuring in Statement : 
C_Struct-fields: C_Struct-fields(v)
, 
C_Struct?: C_Struct?(v)
, 
C_TYPE: C_TYPE()
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
atom: Atom
Lemmas : 
C_TYPE-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
C_Struct?_wf, 
C_TYPE_wf
\mforall{}[v:C\_TYPE()].  C\_Struct-fields(v)  \mmember{}  (Atom  \mtimes{}  C\_TYPE())  List  supposing  \muparrow{}C\_Struct?(v)
Date html generated:
2015_07_17-AM-07_42_17
Last ObjectModification:
2015_01_27-AM-09_47_19
Home
Index