Nuprl Lemma : C_Struct-fields_wf

[v:C_TYPE()]. C_Struct-fields(v) ∈ (Atom × C_TYPE()) List supposing ↑C_Struct?(v)


Proof




Definitions occuring in Statement :  C_Struct-fields: C_Struct-fields(v) C_Struct?: C_Struct?(v) C_TYPE: C_TYPE() list: List assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] atom: Atom
Lemmas :  C_TYPE-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf C_Struct?_wf C_TYPE_wf
\mforall{}[v:C\_TYPE()].  C\_Struct-fields(v)  \mmember{}  (Atom  \mtimes{}  C\_TYPE())  List  supposing  \muparrow{}C\_Struct?(v)



Date html generated: 2015_07_17-AM-07_42_17
Last ObjectModification: 2015_01_27-AM-09_47_19

Home Index