Nuprl Lemma : C_TYPE-induction3

[P:C_TYPE() ─→ ℙ]
  (P[C_Void()]
   P[C_Int()]
   (∀fields:(Atom × C_TYPE()) List. ((∀ct∈map(λp.(snd(p));fields).P[ct])  P[C_Struct(fields)]))
   (∀length:ℕ. ∀elems:C_TYPE().  (P[elems]  P[C_Array(length;elems)]))
   (∀to:C_TYPE(). (P[to]  P[C_Pointer(to)]))
   {∀x:C_TYPE(). P[x]})


Proof




Definitions occuring in Statement :  C_Pointer: C_Pointer(to) C_Array: C_Array(length;elems) C_Struct: C_Struct(fields) C_Int: C_Int() C_Void: C_Void() C_TYPE: C_TYPE() l_all: (∀x∈L.P[x]) map: map(f;as) list: List nat: uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] pi2: snd(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ─→ B[x] product: x:A × B[x] atom: Atom
Lemmas :  C_TYPE-induction2 all_wf int_seg_wf length_wf C_TYPE_wf select_wf sq_stable__le list_wf l_all_wf2 map_wf l_member_wf C_Struct_wf C_Int_wf C_Void_wf select-map subtype_rel_list top_wf non_neg_length length_wf_nat map_length lelt_wf
\mforall{}[P:C\_TYPE()  {}\mrightarrow{}  \mBbbP{}]
    (P[C\_Void()]
    {}\mRightarrow{}  P[C\_Int()]
    {}\mRightarrow{}  (\mforall{}fields:(Atom  \mtimes{}  C\_TYPE())  List.  ((\mforall{}ct\mmember{}map(\mlambda{}p.(snd(p));fields).P[ct])  {}\mRightarrow{}  P[C\_Struct(fields)]))
    {}\mRightarrow{}  (\mforall{}length:\mBbbN{}.  \mforall{}elems:C\_TYPE().    (P[elems]  {}\mRightarrow{}  P[C\_Array(length;elems)]))
    {}\mRightarrow{}  (\mforall{}to:C\_TYPE().  (P[to]  {}\mRightarrow{}  P[C\_Pointer(to)]))
    {}\mRightarrow{}  \{\mforall{}x:C\_TYPE().  P[x]\})



Date html generated: 2015_07_17-AM-07_42_53
Last ObjectModification: 2015_01_27-AM-09_46_54

Home Index