Nuprl Lemma : C_TYPE-induction3
∀[P:C_TYPE() ─→ ℙ]
(P[C_Void()]
⇒ P[C_Int()]
⇒ (∀fields:(Atom × C_TYPE()) List. ((∀ct∈map(λp.(snd(p));fields).P[ct])
⇒ P[C_Struct(fields)]))
⇒ (∀length:ℕ. ∀elems:C_TYPE(). (P[elems]
⇒ P[C_Array(length;elems)]))
⇒ (∀to:C_TYPE(). (P[to]
⇒ P[C_Pointer(to)]))
⇒ {∀x:C_TYPE(). P[x]})
Proof
Definitions occuring in Statement :
C_Pointer: C_Pointer(to)
,
C_Array: C_Array(length;elems)
,
C_Struct: C_Struct(fields)
,
C_Int: C_Int()
,
C_Void: C_Void()
,
C_TYPE: C_TYPE()
,
l_all: (∀x∈L.P[x])
,
map: map(f;as)
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
pi2: snd(t)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
lambda: λx.A[x]
,
function: x:A ─→ B[x]
,
product: x:A × B[x]
,
atom: Atom
Lemmas :
C_TYPE-induction2,
all_wf,
int_seg_wf,
length_wf,
C_TYPE_wf,
select_wf,
sq_stable__le,
list_wf,
l_all_wf2,
map_wf,
l_member_wf,
C_Struct_wf,
C_Int_wf,
C_Void_wf,
select-map,
subtype_rel_list,
top_wf,
non_neg_length,
length_wf_nat,
map_length,
lelt_wf
\mforall{}[P:C\_TYPE() {}\mrightarrow{} \mBbbP{}]
(P[C\_Void()]
{}\mRightarrow{} P[C\_Int()]
{}\mRightarrow{} (\mforall{}fields:(Atom \mtimes{} C\_TYPE()) List. ((\mforall{}ct\mmember{}map(\mlambda{}p.(snd(p));fields).P[ct]) {}\mRightarrow{} P[C\_Struct(fields)]))
{}\mRightarrow{} (\mforall{}length:\mBbbN{}. \mforall{}elems:C\_TYPE(). (P[elems] {}\mRightarrow{} P[C\_Array(length;elems)]))
{}\mRightarrow{} (\mforall{}to:C\_TYPE(). (P[to] {}\mRightarrow{} P[C\_Pointer(to)]))
{}\mRightarrow{} \{\mforall{}x:C\_TYPE(). P[x]\})
Date html generated:
2015_07_17-AM-07_42_53
Last ObjectModification:
2015_01_27-AM-09_46_54
Home
Index