Nuprl Lemma : LV_Scomp-lval_wf
∀[v:C_LVALUE()]. LV_Scomp-lval(v) ∈ C_LVALUE() supposing ↑LV_Scomp?(v)
Proof
Definitions occuring in Statement : 
LV_Scomp-lval: LV_Scomp-lval(v)
, 
LV_Scomp?: LV_Scomp?(v)
, 
C_LVALUE: C_LVALUE()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas : 
C_LVALUE-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
LV_Scomp?_wf, 
C_LVALUE_wf
\mforall{}[v:C\_LVALUE()].  LV\_Scomp-lval(v)  \mmember{}  C\_LVALUE()  supposing  \muparrow{}LV\_Scomp?(v)
Date html generated:
2015_07_17-AM-07_43_26
Last ObjectModification:
2015_01_27-AM-09_46_30
Home
Index