Nuprl Lemma : LV_Scomp-lval_wf

[v:C_LVALUE()]. LV_Scomp-lval(v) ∈ C_LVALUE() supposing ↑LV_Scomp?(v)


Proof




Definitions occuring in Statement :  LV_Scomp-lval: LV_Scomp-lval(v) LV_Scomp?: LV_Scomp?(v) C_LVALUE: C_LVALUE() assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Lemmas :  C_LVALUE-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf LV_Scomp?_wf C_LVALUE_wf
\mforall{}[v:C\_LVALUE()].  LV\_Scomp-lval(v)  \mmember{}  C\_LVALUE()  supposing  \muparrow{}LV\_Scomp?(v)



Date html generated: 2015_07_17-AM-07_43_26
Last ObjectModification: 2015_01_27-AM-09_46_30

Home Index