Nuprl Lemma : MTree_Node-labels_wf

[T:Type]. ∀[v:MultiTree(T)].  MTree_Node-labels(v) ∈ {L:Atom List| 0 < ||L||}  supposing ↑MTree_Node?(v)


Proof




Definitions occuring in Statement :  MTree_Node-labels: MTree_Node-labels(v) MTree_Node?: MTree_Node?(v) MultiTree: MultiTree(T) length: ||as|| list: List assert: b less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n atom: Atom universe: Type
Lemmas :  MultiTree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf MTree_Node?_wf MultiTree_wf
\mforall{}[T:Type].  \mforall{}[v:MultiTree(T)].    MTree\_Node-labels(v)  \mmember{}  \{L:Atom  List|  0  <  ||L||\}    supposing  \muparrow{}MTree\_Nod\000Ce?(v)



Date html generated: 2015_07_17-AM-07_46_01
Last ObjectModification: 2015_01_27-AM-09_44_58

Home Index