Nuprl Lemma : MTree_Node-labels_wf
∀[T:Type]. ∀[v:MultiTree(T)].  MTree_Node-labels(v) ∈ {L:Atom List| 0 < ||L||}  supposing ↑MTree_Node?(v)
Proof
Definitions occuring in Statement : 
MTree_Node-labels: MTree_Node-labels(v)
, 
MTree_Node?: MTree_Node?(v)
, 
MultiTree: MultiTree(T)
, 
length: ||as||
, 
list: T List
, 
assert: ↑b
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
atom: Atom
, 
universe: Type
Lemmas : 
MultiTree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
MTree_Node?_wf, 
MultiTree_wf
\mforall{}[T:Type].  \mforall{}[v:MultiTree(T)].    MTree\_Node-labels(v)  \mmember{}  \{L:Atom  List|  0  <  ||L||\}    supposing  \muparrow{}MTree\_Nod\000Ce?(v)
Date html generated:
2015_07_17-AM-07_46_01
Last ObjectModification:
2015_01_27-AM-09_44_58
Home
Index