Nuprl Lemma : MTree_Node-labels_wf
∀[T:Type]. ∀[v:MultiTree(T)]. MTree_Node-labels(v) ∈ {L:Atom List| 0 < ||L||} supposing ↑MTree_Node?(v)
Proof
Definitions occuring in Statement :
MTree_Node-labels: MTree_Node-labels(v)
,
MTree_Node?: MTree_Node?(v)
,
MultiTree: MultiTree(T)
,
length: ||as||
,
list: T List
,
assert: ↑b
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
natural_number: $n
,
atom: Atom
,
universe: Type
Lemmas :
MultiTree-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
assert_wf,
MTree_Node?_wf,
MultiTree_wf
\mforall{}[T:Type]. \mforall{}[v:MultiTree(T)]. MTree\_Node-labels(v) \mmember{} \{L:Atom List| 0 < ||L||\} supposing \muparrow{}MTree\_Nod\000Ce?(v)
Date html generated:
2015_07_17-AM-07_46_01
Last ObjectModification:
2015_01_27-AM-09_44_58
Home
Index