Nuprl Lemma : RankEx1_Prod-prod_wf

[T:Type]. ∀[v:RankEx1(T)].  RankEx1_Prod-prod(v) ∈ RankEx1(T) × RankEx1(T) supposing ↑RankEx1_Prod?(v)


Proof




Definitions occuring in Statement :  RankEx1_Prod-prod: RankEx1_Prod-prod(v) RankEx1_Prod?: RankEx1_Prod?(v) RankEx1: RankEx1(T) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Lemmas :  RankEx1-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf RankEx1_Prod?_wf RankEx1_wf
\mforall{}[T:Type].  \mforall{}[v:RankEx1(T)].
    RankEx1\_Prod-prod(v)  \mmember{}  RankEx1(T)  \mtimes{}  RankEx1(T)  supposing  \muparrow{}RankEx1\_Prod?(v)



Date html generated: 2015_07_17-AM-07_48_11
Last ObjectModification: 2015_01_27-AM-09_38_19

Home Index